• Title/Summary/Keyword: surface binding

Search Result 768, Processing Time 0.021 seconds

Adsorption and Dissociation Reaction of Carbon Dioxide on Pt(111) and Fe(111) Surface: MO-study

  • Jo, Sang Jun;Park, Dong Ho;Heo, Do Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.8
    • /
    • pp.779-784
    • /
    • 2000
  • Comparing the adsorption properties and dissociation on a Pt(111) iththat ona Fe(111) surface, we have con-sidered seven coordination modes of the adsorbed binding site: $di-${\sigma}$${\Delta}$\mu\pi/\mu$, 1-fbld,2-fold, and 3-fbld sites. On the Pt(111) surface, t he adsorbed binding site of carbon dioxide was strongestat the1-fold site and weakest at the $\pi/\mu-site.$ The adsorbed binding site on the Fe(111) surface was strongest at the di-бsite and weakest at the 3-fold site. We have found that the binding energy at each site that excepted 3-fold on the Fe(111) surface was stronger than the binding energy on the Pt(111) surface and that chemisorbed $CO_2bends$ because of metal mixing with $2\piu${\rightarrow}$6a_1CO_2orbital.$, The dissociation reaction occured in two steps, with an intermediate com-plex composed of atomic oxygen and ${\pi}bonding$ CO forming. The OCO angles of reaction intermediate com-plex structure for the dissociation reaction $were115^{\circ}Con$ the Pt(111), and $117^{\circ}C$ on the Fe(111) surface. We have found that the $CO_2dissociation$ rea11) surface proceeds easily,with an activationenergy about 0.2 eV lower than that on the Pt(111) surface.

Assessment of Lipopolysaccharide-binding Activity of Bifidobacterium and Its Relationship with Cell Surface Hydrophobicity, Autoaggregation, and Inhibition of Interleukin-8 Production

  • Park, Myeong-Soo;Kim, Min-Jeong;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1120-1126
    • /
    • 2007
  • This study was performed to screen probiotic bifidobacteria for their ability to bind and neutralize lipopolysaccharides (LPS) from Escherichia coli and to verify the relationship between LPS-binding ability, cell surface hydrophobicity (CSH), and inhibition of LPS-induced interleukin-8 (IL-8) secretion by HT-29 cells of the various bifidobacterial strains. Ninety bifidobacteria isolates from human feces were assessed for their ability to bind fluorescein isothiocyanate (FITC)-labeled LPS from E. coli. Isolates showing 30-60% binding were designated LPS-high binding (LPS-H) and those with less than 15% binding were designated LPS-low binding (LPS-L). The CSH, autoaggregation (AA), and inhibition of LPS-induced IL-8 release from HT-29 cells of the LPS-H and LPS-L groups were evaluated. Five bifidobacteria strains showed high levels of LPS binding, CSH, AA, and inhibition of IL-8 release. However, statistically significant correlations between LPS binding, CSH, AA, and reduction of IL-8 release were not found. Although we could isolate bifidobacteria with high LPS-binding ability, CSH, AA, and inhibition of IL-8 release, each characteristic should be considered as strain dependent. Bifidobacteria with high LPS binding and inhibition of IL-8 release may be good agents for preventing inflammation by neutralizing Gram-negative endotoxins and improving intestinal health.

Surface Tentiometric Studies on the Interaction of Anionic Polyelectrolytes with Cationic Surfactants

  • Park, Joon-Woo;Lee, Jin-Gyu;Lee, Hoo-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.4
    • /
    • pp.339-343
    • /
    • 1989
  • The interaction of cationic surfactants, n-alkyltrimethylammonium bromide ($C_nTAB$; n = 12, 14, 16) with anionic polyelectrolyte, poly(styrenesulfonate) (PSS) has been studied by surface tension measurement. In the absence of added salt, the cationic surfactants bind to PSS quantitatively up to ca. 60% coverage of anionic sites of the polyanion and the complexes were surface inactive. Further binding of the surfactant cations on PSS caused a sharp conformational transition of the surfactant/ PSS complexes to surface active complexes and accompanied precipitation. The binding showed a biphasic behavior in the presence of NaCl and cooperativity of the binding became less as the concentration of NaCl increased. Binding of the cationic surfactants on poly(vinylsulfonate) also showed the biphasic behavior and the cooperativity of the binding was much less even in the absence of NaCl. The binding of surfactant to PSS provided hydrophobic environment to solubilized pyrene and reduced the viscosity of the solution greatly even at surfactant concentrations well below cmc. This study indicated that the surfactant bound to PSS up to $60{\%}$ coverage of PSS sites are present as surfactant aggregates which are wrapped up with PSS chains, and hydrophobic interaction is an important factor in the binding of the surfactants to PSS.

Role of Cel5H protein surface amino acids in binding with clay minerals and measurements of its forces

  • Renukaradhya K. Math;Nagakumar Bharatham;Palaksha K. Javaregowda;Han Dae Yun
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.17.1-17.10
    • /
    • 2021
  • Our previous study on the binding activity between Cel5H and clay minerals showed highest binding efficiency among other cellulase enzymes cloned. Here, based on previous studies, we hypothesized that the positive amino acids on the surface of Cel5H protein may play an important role in binding to clay surfaces. To examine this, protein sequences of Bacillus licheniformis Cel5H (BlCel5H) and Paenibacillus polymyxa Cel5A (PpCel5A) were analyzed and then selected amino acids were mutated. These mutated proteins were investigated for binding activity and force measurement via atomic force microscopy (AFM). A total of seven amino acids which are only present in BlCel5H but not in PpCel5A were selected for mutational studies and the positive residues which are present in both were omitted. Of the seven selected surface lysine residues, only three mutants K196A(M2), K54A(M3) and K157T(M4) showed 12%, 7% and 8% less clay mineral binding ability, respectively compared with wild-type. The probable reason why other mutants did not show altered binding efficiency might be due to relative location of amino acids on the protein surface. Meanwhile, measurement of adhesion forces on mica sheets showed a well-defined maximum at 69±19 pN for wild-type, 58±19 pN for M2, 53±19 pN for M3, and 49±19 pN for M4 proteins. Hence, our results demonstrated that relative location of surface amino acids of Cel5H protein especially positive charged amino acids are important in the process of clay mineral-protein binding interaction through electrostatic exchange of charges.

Surface modification of polymeric membranes for low protein binding

  • Higuchi, Akon;Tamai, Miho;Tagawa, Yoh-Ichi;Chang, Yung;Ling, Qing-Dong
    • Membrane and Water Treatment
    • /
    • v.1 no.2
    • /
    • pp.103-120
    • /
    • 2010
  • Surface modification of microfiltration and ultrafiltration membranes has been widely used to improve the protein adsorption resistance and permeation properties of hydrophobic membranes. Several surface modification methods for converting conventional membranes into low-protein-binding membranes are reviewed. They are categorized as either physical modification or chemical modification of the membrane surface. Physical modification of the membrane surface can be achieved by coating it with hydrophilic polymers, hydrophilic-hydrophobic copolymers, surfactants or proteins. Another method of physical modification is plasma treatment with gases. A hydrophilic membrane surface can be also generated during phase-inverted micro-separation during membrane formation, by blending hydrophilic or hydrophilic-hydrophobic polymers with a hydrophobic base membrane polymer. The most widely used method of chemical modification is surface grafting of a hydrophilic polymer by UV polymerization because it is the easiest method; the membranes are dipped into monomers with and without photo-initiators, then irradiated with UV. Plasma-induced polymerization of hydrophilic monomers on the surface is another popular method, and surface chemical reactions have also been developed by several researchers. Several important examples of physical and chemical modifications of membrane surfaces for low-protein-binding are summarized in this article.

Detection and Kinetics of Mucosal Pathogenic Bacteria Binding with Polysaccharides

  • Chung, Kyong-Hwan;Park, Jung-Soon;Hwang, Hyun-Soo;Kim, Jin-Chul;Lee, Ki-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1191-1197
    • /
    • 2007
  • The detection and kinetics of mucosal pathogenic bacteria binding on polysaccharide ligands were studied using a surface plasmon resonance biosensor. The kinetic model applied curve-fitting to the experimental surface plasmon resonance sensorgrams to evaluate the binding interactions. The kinetic parameters for the mucosal pathogenic bacteria (Pseudomonas aeruginosa, Pseudomonas fluorescens, Serratia marcescens) with the alginate ligand were determined from a kinetic model. In addition, the binding interactions of the mucosal pathogenic bacteria with polysaccharide binding pairs (Pseudomonas aeruginosa/alginate, Streptococcus pneumoniae/pneumococcal polysaccharide, Staphylococcus aureus/pectin) were also compared with their kinetic parameters. The rate constants of association for Pseudomonas aeruginosa with the alginate ligand were higher than those for Pseudomonas fluorescens. Serratia marcescens had no detectable interaction with the alginate ligand. The adhesion affinity of Pseudomonas aeruginosa with alginate was higher than that for the other binding pairs. The binding affinities of the pathogenic bacteria with their own polysaccharide were higher than that of Staphylococcus aureus with pectin. Measuring the contact angle was found to be a feasible method for detecting binding interactions between analytes and ligands.

Integrated Modeling of Chloride Binding Isotherm of Concrete Based on Physical and Chemical Mechanisms (물리화학적 메커니즘에 기이한 큰크리트의 염화물 흡착 등온에 대한 모델링)

  • Yoon, In-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.537-540
    • /
    • 2006
  • Over the past few decades, a considerable number of studies on the durability of concrete have been carried out extensively. A lot of improvements have been achieved especially in modeling of ionic flows. However, the majority of these researches have not dealt with the chloride binding isotherm based on the mechanism, although chloride binding capacity can significantly impact on the total service life of concrete under marine environment. The purpose of this study is to develop the model of chloride binding isotherm based on the individual mechanism. It is well known that chlorides ions in concrete can be present; free chlorides dissolved in the pore solution, chemical bound chlorides reacted with the hydration compounds of cement, and physical bound attracted to the surface of C-S-H grains. First, sub-model for water soluble chloride content is suggested as a function of pore solution and degree of saturation. Second, chemical model is suggested separately to estimate the response of binding capacity due to C-S-H and Friedel's salt. Finally, physical bound chloride content is estimated to consider a surface area of C-S-H nano-grains and the distance limited by the Van der Waals force. The new model of chloride binding isotherm suggested in this study is based on their intrinsic binding mechanisms and hydration reaction of concrete. Accordingly, it is possible to characterize chloride binding isotherm at the arbitrary stage of hydration time and arbitrary location from the surface of concrete. Comparative study with experimental data of published literature is accomplished to validity this model.

  • PDF

Surface Reconstruction on Hydrogen Covered W(011) (수소가 흡착된 W(011) 표면의 재구성)

  • 김희봉;최원국;홍사용;황정남;정광호
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.83-87
    • /
    • 1992
  • Rencently, angle-resolved ultraviolet photoemission measurements of the Fermi surface contours for Mo(011) and W(011) are reported. The electron contour of W(011) is expanded upon hydrogen adsorption, which implies that the surface states consisting of electron pockets are shifted to higher binding energy. This phenomena can be explained by the band flattening. We explained here the reconstruction of W(011) surface induced by adsorption of hydrogen in terms of band flattening of surface states with a combination of S. E. Trullinger long range dipole-dipole interaction force and Kohn anomaly.

  • PDF

Recent Advances in Structural Studies of Antifreeze Proteins (구조 생물학을 이용한 Antifreeze protein의 최근 연구동향)

  • Lee, Jun-Hyuck;Lee, Sung-Gu;Kim, Hak-Jun
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.159-169
    • /
    • 2011
  • Antifreeze proteins (AFPs) have ice binding affinity, depress freezing temperature and inhibit ice recystallization which protect cellular membranes in polar organisms. Recent structural studies of antifreeze proteins have significantly expanded our understanding of the structure-function relationship and ice crystal growth inhibition. Although AFPs (Type I-IV AFP from fish, insect AFP and Plant AFP) have completely different fold and no sequence homology, they share a common feature of their surface area for ice binding property. The conserved ice-binding sites are relatively flat and hydrophobic. For example, Type I AFP has an amphipathic, single ${\alpha}$-helix and has regularly spaced Thr-Ala residues which make direct interaction with oxygen atoms of ice crystals. Unlike Type I AFP, Type II and III AFP are compact globular proteins that contain a flat ice-binding patch on the surface. Type II and Type III AFP show a remarkable structural similarity with the sugar binding lectin protein and C-terminal domain of sialic acid synthase, respectively. Type IV is assumed to form a four-helix bundle which has sequence similarity with apolipoprotein. The results of our modeling suggest an ice-binding induced structural change of Type IV AFP. Insect AFP has ${\beta}$-helical structure with a regular array of Thr-X-Thr motif. Threonine residues of each Thr-X-Thr motif fit well into the ice crystal lattice and provide a good surface-surface complementarity. This review focuses on the structural characteristics and details of the ice-binding mechanism of antifreeze proteins.

Characterization of binding specificity using GST-conjugated mutant huntingtin epitopes in surface plasmon resonance (SPR)

  • Cho, Hang-Hee;Kim, Tae Hoon;Kim, Hong-Duck;Cho, Jae-Hyeon
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.4
    • /
    • pp.185-194
    • /
    • 2021
  • Polyglutamine extension in the coding sequence of mutant huntingtin causes neuronal degeneration associated with the formation of insoluble polyglutamine aggregates in Huntington's disease (HD). Mutant huntingtin can form aggregates within the nucleus and processes of neurons possibly due to misfolding of the proteins. To better understand the mechanism by which an elongated polyglutamine causes aggregates, we have developed an in vitro binding assay system of polyglutamine tract from truncated huntingtin. We made GST-HD exon1 fusion proteins which have expanded polyglutamine epitopes (e.g., 17, 23, 32, 46, 60, 78, 81, and 94 CAG repeats). In the present emergence of new study adjusted nanotechnology on protein chip such as surface plasmon resonance strategy which used to determine the substance which protein binds in drug discovery platform is worth to understand better neurodegenerative diseases (i.e., Alzheimer disease, Parkinson disease and Huntington disease) and its pathogenesis along with development of therapeutic measures. Hence, we used strengths of surface plasmon resonance (SPR) technology which is enabled to examine binding specificity and explore targeted molecular epitope using its electron charged wave pattern in HD pathogenesis utilize conjugated mutant epitope of HD protein and its interaction whether wild type GST-HD interacts with mutant GST-HD with maximum binding affinity at pH 6.85. We found that the maximum binding affinity of GST-HD17 with GST-HD81 was higher than the binding affinities of GST-HD17 with other mutant GST-HD constructs. Furthermore, our finding illustrated that the mutant form of GST-HD60 showed a stronger binding to GST-HD23 or GST-HD17 than GST-HD60 or GST-HD81. These results indicate that the binding affinity of mutant huntingtin does not correlate with the length of polyglutamine. It suggests that the aggregation of an expanded polyglutamine might have easily occurred in the presence of wild type form of huntingtin.