• Title/Summary/Keyword: surface area

Search Result 11,212, Processing Time 0.048 seconds

Analysis of Uncertainty in Ocean Color Products by Water Vapor Vertical Profile (수증기 연직 분포에 의한 GOCI-II 해색 산출물 오차 분석)

  • Kyeong-Sang Lee;Sujung Bae;Eunkyung Lee;Jae-Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1591-1604
    • /
    • 2023
  • In ocean color remote sensing, atmospheric correction is a vital process for ensuring the accuracy and reliability of ocean color products. Furthermore, in recent years, the remote sensing community has intensified its requirements for understanding errors in satellite data. Accordingly, research is currently addressing errors in remote sensing reflectance (Rrs) resulting from inaccuracies in meteorological variables (total ozone, pressure, wind field, and total precipitable water) used as auxiliary data for atmospheric correction. However, there has been no investigation into the error in Rrs caused by the variability of the water vapor profile, despite it being a recognized error source. In this study, we used the Second Simulation of a Satellite Signal Vector version 2.1 simulation to compute errors in water vapor transmittance arising from variations in the water vapor profile within the GOCI-II observation area. Subsequently, we conducted an analysis of the associated errors in ocean color products. The observed water vapor profile not only exhibited a complex shape but also showed significant variations near the surface, leading to differences of up to 0.007 compared to the US standard 62 water vapor profile used in the GOCI-II atmospheric correction. The resulting variation in water vapor transmittance led to a difference in aerosol reflectance estimation, consequently introducing errors in Rrs across all GOCI-II bands. However, the error of Rrs in the 412-555 nm due to the difference in the water vapor profile band was found to be below 2%, which is lower than the required accuracy. Also, similar errors were shown in other ocean color products such as chlorophyll-a concentration, colored dissolved organic matter, and total suspended matter concentration. The results of this study indicate that the variability in water vapor profiles has minimal impact on the accuracy of atmospheric correction and ocean color products. Therefore, improving the accuracy of the input data related to the water vapor column concentration is even more critical for enhancing the accuracy of ocean color products in terms of water vapor absorption correction.

A Study on Heterogeneous Catalysts for Transesterification of Nepalese Jatropha Oil (네팔산 Jatropha 오일의 전이에스테르화 반응용 불균일계 촉매 연구)

  • Youngbin Kim;Seunghee Lee;Minseok Sim;Yehee Kim;Rajendra Joshi;Jong-Ki Jeon
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.47-54
    • /
    • 2024
  • Jatropha oil extracted from the seeds of Nepalese Jatropha curcas, a non-edible crop, was used as a raw material and converted to biodiesel through a two-step process consisting of an esterification reaction and a transesterification reaction. Amberlyst-15 catalyst was applied to the esterification reaction between the free fatty acids contained in the Jatropha oil and methanol. The acid value of the Jatropha oil could be lowered from 11.0 to 0.26 mgKOH/g through esterification. Biodiesel was synthesized through a transesterification reaction between Jatropha oil with an acid value of 0.26 mgKOH/g and methanol over NaOH/γ-Al2O3 catalysts. As the loading amount of NaOH increased from 3 to 25 wt%, the specific surface area decreased from 129 to 28 m2/g and the pore volume decreased from 0.249 to 0.129 cm3/g. The amount and intensity of base sites over the NaOH/γ-Al2O3 catalysts increased simultaneously with the NaOH loading amount. It was confirmed that the optimal NaOH loading amount for the NaOH/γ-Al2O3 catalyst was 12 wt%. The optimal temperature for the transesterification reaction of Jatropha oil using the NaOH/γ-Al2O3 catalyst was selected to be 65 ℃. In the transesterification reaction of Jatropha oil using the NaOH/γ-Al2O3 catalyst, the reaction rate was affected by external diffusion limitation when the stirring speed was below 150 RPM, however the external diffusion limitation was negligible at higher stirring speeds.

Study on the Controlling Mechaniques of the Environmental Factors in the Mushroom Growing House in Chonnam Province (전남 지방에 있어서의 양송이 재배에 최적한 환경조건 조절법 분석에 관한 연구)

  • Chung, Byung-Jae;Lee, Eun-Chol
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.32-34
    • /
    • 1974
  • The important results which have been obtained in the investigation can be recapitulated as follows. 1. As demonstrated by the experimental results and analyses concerning their effects in the on-ground type mushroom house, the constructions in relation to the side wall and ceiling of the experimental house showed a sufficient heat insulation on effect to protect insides of the house from outside climatic conditions. 2. As the effect on the solar type experimental mushroom house which was constructed in a half basement has been shown by the experimental results and analyses, it has been proved to be effective for making use of solar heat. However there were found two problems to be improved for putting solar house to practical use in the farm mushroom growing: (1) the construction of the roof and ceiling should be the same as for the on ground type house, and (2) the solar heat generating system should be reconstructed properly. 3. Among several ventilation systems which have been studied in the experiments, the underground earthen pipe and ceiling ventilation, and vertical side wall and ceiling ventilation systems have been proved to be most effective for natural ventilation. 4. The experimental results have shown that ventilation systems such as the vertical side wall and underground ventilation systems are suitable to put to practical use as natural ventilation systems for farm mushroom house. These ventilation systems can remarkably improve the temperature of fresh air which is introduced into the house by heat transfers within the ventilation passages, so as to approach to the desired temperature of the house without any cooling or heating operation. For example, if it is assuming that X is the outside temperature and Y is the amount of temperature adjustment made by the influence of the ventilation system, the relationships that exist between X and Y can be expressed by the following regression lines. Underground iron pipe ventilation system. Y=0.9X-12.8 Underground earthen pipe ventilation system. Y=0.96X-15.11 Vertical side wall ventilation system. Y=0.94X-17.57 5. The experimental results have 8hown that the relationships existing between the admitted and expelled air and the $CO_2$ concentration can be described with experimental regression lines or an exponent equation as follows: 5.1 If it is assumed that X is an air speed cm/sec. and Y is an expelled air speed in cm/sec. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below: 5.2 If it IS assumed that X is an admitted volume of air in $m^3$/hr. and Y is an expelled volume of air in $m^3$/hr. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below. 5.3 If it is assumed that expelled air speed in emisec. and replacement air speed in cm/sec. at the bed surface in a natural ventilation system are shown as X and Y. respectively, since the Y is a function of the X. the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV (50%) ventilation system. Y=-0.54X+0.84 5.4 If it is assumed that the replacement air speed in cm/sec. at the bed surface is shown as X, and $CO_2$ concentration which is expressed by multiplying 1000 times the actual value of $CO_2$ % is shown as Y, in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV(50%) ventilation system. Y=114.53-6.42X 5.5 If it is assumed that the expelled volume of air is shown as X and the $CO_2$ concencration which is expressed by multiplying 1000 times the actual of $CO_2$% is shown as Y in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following exponent equation: GE(100%)-CV(50%) ventilation system. Y=$127.18{\times}1.0093^{-x}$ 5.6 The experimental results have shown that the ratios of the cross sectional area of the GE and CV vent to the total cubic capacity of the house, required for providing an adequate amount of air in a natural ventilation system, can be estimated as follows: GE(admitting vent of the underground ventilation) 0.3-0.5% (controllable) CV(expelling vent of the ceiling ventilation) 0.8-1.0% (controllable) 6. Among several heating devices which were studied in the experiments, the hot-water boilor which wasmodified to be fitted both as hot-water boiler and as a pressureless steam-water was found most suitable for farm mushroom growing.

  • PDF

A Study on the Excavated Sab(a funeral fan) from Lime-filled Tomb and Lime-layered Tomb during the Joseon Dynasty (조선시대 회격·회곽묘 출토 삽(翣)에 대한 고찰)

  • Yi, Seung Hae;An, Bo Yeon
    • Korean Journal of Heritage: History & Science
    • /
    • v.41 no.2
    • /
    • pp.43-59
    • /
    • 2008
  • Sap(?, a funeral fan) is a funeral ceremonial object used in association with a Confucian ceremonial custom, which was crafted by making a wooden frame, attaching a white cloth or a thick paper onto it, drawing pictures on it, and making a holder for a handle. According to Liji(Records of Rites), Sap was used since the Zhou Dynasty, and these Chinese Sap examples are no big different than the Korean Sap examples, which were described in Joseon Wangjo Sillok(Annals of the Joseon Dynasty), Gukjo Oryeui(the Five Rites of the State), and Sarye Pyeollam(Handbook on Four Rituals). This study explored Sap excavated in lime-filled tombs and lime-layered tombs of aristocrats dating back to Joseon, as well as their historical records to examine Sap's characteristics according to their examples, manufacturing methods, and use time. The number and designs of Sap varied according to the deceased' social status aristocrats used mainly one pair of 亞-shaped Bulsap, and a pair of Hwasap with a cloud design depicted on it. A Sap was wrapped twice with Chojuji paper or Jeojuji paper, and for the third time with Yeonchangji paper. Then, it was covered with a white ramie, a hemp, a cotton, a silk satin, etc. Bobul(an axe shape and 亞-shape design) was drawn on both sides of Sap, and a rising current of cloud was drawn at the peripheral area mainly with red or scarlet pigments. Sap, which were excavated from aristocrats'lime-filled and lime-layered tombs, are the type of Sap which were separated from its handle. These excavated Sap are those whose long handles were burnt during the death carriage procession, leaving Sap, which later were erected on both sides of the coffin. The manufacturing process of excavated relics can be inferred by examining them. The excavated relics are classified into those with three points and those with two points according to the number of point. Of the three-point type(Type I), there is the kind of relic that was woven into something like a basket by using a whole wood plate or cutting bamboo into flat shapes. The three-point Sap was concentrated comparatively in the early half of Joseon, and was manufactured with various methods compared with its rather unified overall shape. In the meantime, the two-point Sap was manufactured with a relatively formatted method; its body was manufactured in the form of a rectangle or a reverse trapezoid, and then its upper parts with two points hanging from them were connected, and the top surface was made into a curve(Type II) or a straight line(Type III) differentiating it from the three-point type. This manufacturing method, compared with that of the three-point type, is simple, but is not greatly different from the three-point type manufacturing method. In particular, the method of crafting the top surface into a straight line has been used until today. Of the examined 30 Sap examples, those whose production years were made known from the buried persons'death years inscribed on the tomb stones, were reexamined, indicating that type I was concentrated in the first half of the $16^{th}$ century. Type II spanned from the second half of the $16^{th}$ century to the second half of the $17^{th}$ century, and type III spanned from the first half of the $17^{th}$ century to the first half of the $18^{th}$ century. The shape of Sap is deemed to have changed from type I to type II and again from type II to type III In the $17^{th}$ century, which was a time of change, types II and III coexisted. Of the three types of Sap, types II and III re similar because they have two points; thus a noteworthy transit time is thought to have been the middle of the $16^{th}$ century. Type I compared with types II and III is thought to have required more efforts and skills in the production process, and as time passed, the shape and manufacturing methods of Sap are presumed to have been further simplified according to the principle of economy. The simplification of funeral ceremonies is presumed to have been furthered after Imjinwaeran(Japanese invasion of Joseon, 1592~1598), given that as shown in the Annals of King Seonjo, state funerals were suspended several times. In the case of Sap, simplification began from the second half of the $16^{th}$ century, and even in the $18^{th}$ century, rather than separately crafting Sap, Sap was directly drawn on the coffin cover and the coffin. However, in this simplification of form, regulations on the use of Sap specified in Liji were observed, and thus the ceremony was rationally simplified.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Evaluation of CH4 Flux for Continuous Observation from Intertidal Flat Sediments in the Eoeun-ri, Taean-gun on the Mid-western Coast of Korea (서해안 태안 어은리 갯벌의 연속관측 메탄(CH4) 플럭스 특성 평가)

  • Lee, Jun-Ho;Rho, Kyoung Chan;Woo, Han Jun;Kang, Jeongwon;Jeong, Kap-Sik;Jang, Seok
    • Economic and Environmental Geology
    • /
    • v.48 no.2
    • /
    • pp.147-160
    • /
    • 2015
  • In 2014, on 31 August and 1 September, the emissions of $CH_4$, $CO_2$, and $O_2$ gases were measured six times using the closed chamber method from exposed tidal flat sediments in the same position relative to the low point of the tidal cycle in the Eoeun-ri, Taean-gun, on the Mid-western Coast of Korea. The concentrations of $CH_4$ in the air sample collected in the chamber were measured using gas chromatography with an EG analyzer, model GS-23, within 6 hours of collection, and the other gases were measured in real time using a multi-gas monitor. The gas emission fluxes (source (+), and sink (-)) were calculated from a simple linear regression analysis of the changes in the concentrations over time. In order to see the surrounding parameters (water content, temperature, total organic carbon, average mean size of sediments, and the temperature of the inner chamber) were measured at the study site. On the first day, across three measurements during 5 hours 20 minutes, the observed $CO_2$ flux absorption was -137.00 to $-81.73mg/m^2/hr$, and the $O_2$ absorption, measured simultaneously, was -0.03 to $0.00mg/m^2/hr$. On the second day using an identical number of measurements, the $CO_2$ absorption was -20.43 to $-2.11mg/m^2/hr$, and the $O_2$ absorption -0.18 to $-0.14mg/m^2/hr$. The $CH_4$ absorption before low tide was $-0.02mg/m^2/hr$ (first day, Pearson correlation coefficient using the SPSS statistical analysis is -0.555(n=5, p=0.332, pronounced negative linear relationship)), and $-0.15mg/m^2/hr$ (second day, -0.915(n=5, p=0.030, strong negative linear relationship)) on both measurement days. The emitted flux after low tide on both measurement days reached a minimum of $+0.00mg/m^2/hr$ (+0.713(n=5, p=0.176, linear relationship which can be almost ignored)), and a maximum of $+0.03mg/m^2/hr$ (+0.194(n=5, p=0.754, weak positive linear relationship)) after low tide. However, the absolute values of the $CH_4$ fluxes were analyzed at different times. These results suggest that rate for $CH_4$ fluxes, even the same time and area, were influenced by changes in the tidal cycle characteristics of surface sediments for understanding their correlation with these gas emissions, and surrounding parameters such as physiochemical sediments conditions.

Pain Complaint according to Usage of Standard-Sized Desks and Chairs for Middle and High School Students (중(中)·고등(高等) 학생(學生)들의 책상 및 의자(椅子)의 표준호식(標準號數) 사용여부(使用與否)와 통증(痛症) 호소율(呼訴率))

  • Kang, Kyung Yull;Cha, Byong Jun;Park, Jae Yong
    • Journal of the Korean Society of School Health
    • /
    • v.8 no.2
    • /
    • pp.219-232
    • /
    • 1995
  • This study was conducted to examine both usage rate of standard sized desks and chairs for the middle and high school students and pain complant of students who use standard-size desk & chair in Taegu, Korea, by means of questionnaires with 1,201 students of both male and female middle and high schools in Taegu area from March 20 to April 19, 1995. The result of this study is summarized as follows. It was mostly shown that the desks and chairs used by those middle and high school students were 1-3 higher than their standard sizes, and that they also preferred a little higher size with respect to their desired sizes. The rate of students who use the standard size showed that the desk accounted for 30.5%, and chair for 21.0%, that the size bigger than the standard accounted for 61.3%, respectively, and 65.2, and that the size smaller than the standard accounted for 8.2%, respectively, and 13.8%. The using rate of the standard sized for the middle school students indicated that their desk accounted for 44.1%, and their chair for 26.0% which were higher than 16.1% and 14.7% for the high school students. Then, the rate of the male students indicated that their desk accounted for 31.5% and their chair for 24.5% which were higher than 29.6% and 17.6% of the female students. In addition, the using rate of the standard size for the public schools showed that the desk accounted for 34.2% and chair for 24.5% which were also higher than 27.1% and 17.5% of the private schools. It was shown, however, that the using rate of the standard size for both groups was lower. The most inconvenient factor in the usage of their desks appeared in such orders as their wear, narrow drawers, too low height and uneven face, while the factor in their chairs did in such orders as too hard chair body the surface and back part, wear, lower and higher height and narrow width. Their physical pains resulting from usage of those desks and chairs showed that the male and female middle school students' complaint rate of pains in their neck and shoulder accounted for 32.1%, respectively, and 36.0% which were highest, while those high school students' complaint rate in their waist accounted for 37.9%, respectively, and 44.1% which were hight. It was also shown that the bigger their height, the higher their complaint rate of pain in the waist, and that their complaint rate in the shoulder and neck was totally higher. When using the standard-sized desks and chairs, their complaint rate of pain in the shoulder and neck accounted for 25.4%, respectively, and 23.8%. As compared with them, when using the desks or chairs bigger than the standard size, their complaint rate accounted for 31.5%, respectively, and 31.8% which were high while it did 26.5% and 28.9% when using them smaller than the standard size which were also high, the usage of those standard-sized desks and chairs indicated lower complaint rate of pain in their waist than used the desks and chairs bigger or smaller than the standard size. The rate of the middle and high school students who use their standard size is very low and the size of their desks and chairs are quite different from those they hope to use and many students appeal their discomfort with their desks and chairs. Therefore, the school should try to provide the desks and chairs of the various students' standard sizes in consideration of their physical condition and it also should try to get extra desks and chairs of various sizes according to the students' standard size and their preference.

  • PDF

Studies on the Cutting Managemente of Pasture during the Mid Summer Season I. Effect of cutting management on tall fescue dominated pasture (고온기 초지의 예취관리에 관한 연구 I. 고온기 예취방법이 tall fescue 우점초지의 재생 , 잡초발생 및 수량에 미치는 영향)

  • Seo, S.;Han, Y.C.;Park, M.S.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.1
    • /
    • pp.22-32
    • /
    • 1985
  • Optimum pasture management during the summer season is an important factor to maintain good regrowth and persistence of pasture in Korea. This experiment was carried out to investigate the effects of the cutting management on the dead plant, weed appearance, regrowth and carbohydrate reserves in stubble, and dry matter yield of tall fescue dominated pasture during the mid summer season. For the test, a split plot design with 4 replications was treated with 2 different the third cutting times (July 12 and Aug. 4) as the mainplots, and 3 different cutting heights (3, 6 and 9 cm) at the third cut as the subplots, and the experiment was done at the experimental field of the Livestock Experiment Station, in Suweon, 1984. The results obtained are summarized as follows: 1. Considering the meteorological conditions during the experimental period, the temperature was a little higher by $2^{\circ}C$ than that of average year, especially the first and second decade of August were high. And the precipitation of 1984 tended to be low when compared with the average year. 2. Temperature of soil surface and underground tended to increase by $1-3^{\circ}C$ as the stubble height was low during the summer season. 3. Regrowth leaf length and leaf area after the third cut increased significantly with the high cutting height at the third cut. 4. A significant higher total nonstructural carbohydrate (TNC) content in stubble after the third cut was observed in the high stubble cut on July 12. The results indicate that the high stubble height reserves more carbohydrates for early regrowth stage after the third cut when compared with the low stubble. On Aug. 4, however, the recovery of TNC contents after the third cut was not effective due to high temperature and rainfall. 5. The percentage of dead plant after the third cut was found to be high with the low cutting height during the mid summer season (p<0.05). 6. With the low stubble height on July 12 cut, it was appeared that the percentage of weed was significantly increased (p<0.05), and main weeds appeared after the third cut were Echinochloa crusgalli>Digitaria sanguinalis>Cyperus iria>Rumex crispus, and so on. In case of cut on Aug. 4, weed appearance was no difference at three cutting heights. 7. Dry matter yield at the third cut was increased in the plot of cutting on Aug. 4 and stubble height (p<0.05). However, yields at the fourth and fifth cut were increased with high stubble height (p<0.05), regardless of harvest time. 8. In total dry matter yield after the third cut, there was no significant difference between the cutting time and forage yield. However, total yield on July 12 was increased with the high stubble height (p<0.05). 9. From the above results, it is suggested that the 9 cm cutting height during the mid summer season is the most effective for good regrowth, weed control and forage yield of tall fescue dominated pasture.

  • PDF

Relation between the Heat Budget and the Cold Water in the Yellow Sea in Winter (동계의 열수지 황해냉수와의 관계)

  • Han, Young-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.1
    • /
    • pp.1-14
    • /
    • 1978
  • To study the fluctuation of cold water in the East China Sea in summer heat budget of the Yellow Sea in winter was analysed based on the oceanographic and meteorological data compiled from 1951 to 1974. The maintain value of insolation was observed in December($160{\sim}190ly/day$), while the maximum in February ($250{\sim}260ly/day$). The range of the annual variation was found to be less than 50 ly/day. The value of the radiation term ($Q_s-Q_r-Q_h$) was remarkably small (mean 20 ly/day) in winter. It was negative value in December and January, and a positive value in February. The minimum total heat exchange from the sea ($Q_({h+c}$) was found value (471 ly/day) in February 1962, and the maximum (882 ly/day) in January 1963. The annual total heat exchange was minimum (588 ly/day) in 1962, and maximum (716 ly/day) in 1968. If the average deviation of mean water temperature at 50m depth layer were assumed to be the horizontal index ($C_h$) of colder water, $C_h$ is $C_h=\frac{{\Sigma}\limit_i\;A_i\;T_i}{{\Sigma}\limit_i\;A_i}$ where $A_i$ denotes the area of isothermal region and $T_i$ the value of deviation from mean sea water temperature. The vertical index ($C_v$) of cold water can be expressed similarly. Consequently the total index (C) of cold water equals to the sum of the two components, i.e. $C=C_h$$C_v$. Taking the deviation of mean sea surface temperature(T'w) in the third ten-day of Novembers in the Yellow Sea as the value of the initial condition, the following expressions are deduced : $C-T'w=32.06 - 0.049$ $\;Q_T$ $C_h-T'w/2=12.20-0.019\;Q_T$ $C_v-T'w/2=18.07-0.027\;Q_T$ where $Q_T$ denotes the total heat exchange of the sea. The correlation coefficients of these regression equations were found to be greater than 0.9. Heat budget was 588 ly/day in winter, and minimum water temperature of cold water was $18^{\circ}C$ in summer of 1962. The isotherm of $23^{\circ}C$ extended narrowly to southward up to $29^{\circ}N$ in summer. However, heat budget was 716 ly/day, and minimum water temperature of cold water was $12^{\circ}C$ in summer of 1968. The isotherm of $23^{\circ}C$ extended widely to southward up to $28^{\circ}30'N$ in summer. As a result of the present study, it may be concluded that the fluctuation of cold water of the East China Sea in summer can be predicted by the calculation of heat budget of the Yellow Sea in winter.

  • PDF

On the wing venation and scales of Dendrolimus spectabilis Butler (I) (솔나방의 시맥(翅脈)과 인편(鱗片)에 관(關)한 연구(硏究) (I))

  • Yun, Jeong Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.2 no.1
    • /
    • pp.59-65
    • /
    • 1962
  • The objects of this experiment are to find out the local variation of the Dendrolimus Spectabilis Butler, of which sample was first collecteted 15 bodies of male and 35 bodies of female adult at Suwon area. the wing veins and the scale shape have been observed through the microscope (100) and the scale size (from the bottom of the scale to the top of the lobe) has also been measured by the micrometer. The results of this experiment are as follows: 1. There is nodifference between the venation of the male body and that of the female body. Also we can not find any differences between the right and the left wing, and between each body. The fore wings consit of 13 longitudinal veins and the only one "V" shape cross vein which is between the 5th and 6th vein. The hind wings consist of 9 longitudinal veins and the only one "V" shape cross vein which is mentioned above. 2. The scale types are divided into 4 Groups in its shape. (A) The scales of I Group are short and the lower parts of them almost look like a circle, having a small projection at their bottom. The upper parts of them have 2 or 10 lobes. We can find the lobes with fine hairs or the lobes without them at the top of the scales. (B) The scales of II Group are longer than that of I Group. The shape of the lower parts of the scales is similar to that of I Group. The upper parts of the scales have 2 or 10 lobes. (C) The scales of III Group are long and almost alike in a long wedgeshape. The upper parts of the scales have 2 Or IO lobes and we can find long fine hairs at the top of each lobe. (D) The scales of IV Group are long and the shape of the lower parts of the scales is similar to that of III Group. The lobes are short and not sharp. We can find 2 or 9 lobes. 3. The scales of I Group and II Group are distributed on the whole surface except on the outer margin. The most scales of III Group are distributed on the wing base. The scales of IV Group are distributed on the outer margin only. The scales with 4 or 5 lobes are most widely distributed not considering their Group or distributing parts. 4. In I Group the variation of the scale length become gradually greater as the number of the lobes are increasing. In II, III, IV Group, however, the variation of the scale length is in direct opposition to the above mentioned. The variation of the scale width becomes pretty small in any Groups and the scale width become wider as the number of the lobes are increasing. 5. The source of the wing colouration is pigmnetal colour, and the wing colouration is expressed by the amount of brown and white scales.

  • PDF