• Title/Summary/Keyword: surface amination

Search Result 19, Processing Time 0.024 seconds

Synthesis of Ethylamines for the Reductive Amination of Ethanol over Ni Catalysts: Effect of Supports (니켈 촉매상에서 에탄올의 환원성 아민화반응에 의한 에틸아민 제조 : 담체의 영향)

  • Jeong, Ye-Seul;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.714-722
    • /
    • 2019
  • Catalysts were prepared by using incipient wetness impregnation method with 17 wt% Ni on a support ($SiO_2-Y_2O_3$, $Al_2O_3$, $SiO_2-ZrO_2$, $SiO_2$, $TiO_2$, MgO) and the catalytic activity in the reductive amination of ethanol with ammonia in the presence of hydrogen was compared and evaluated. The catalysts used before and after the reaction were characterized using X-ray diffraction, nitrogen adsorption, ethanol-temperature programmed desorption (EtOH-TPD), isopropanol-temperature programmed desorption (IPA-TPD), and hydrogen chemisorption etc. In the case of preparing $ZrO_2$ and $Y_2O_3$ supports, the small amount of Si dissolution from the Pyrex reactor surface provoked the formation of mixed oxides $SiO_2-ZrO_2$ and $SiO_2-Y_2O_3$. Among the catalysts used, $Ni/SiO_2-Y_2O_3$ catalyst showed the best activity, and this good activity was closely related to the highest nickel dispersion, and low desorption temperature in EtOH-TPD and IPA-TPD. The low catalytic activity on Ni/MgO catalysts showed low activity due to the formation of NiO-MgO solid-solutions. In the case of $Ni/TiO_2$, the reactivity was low due to the low nickel metal phase due to strong metal-support interaction. In the case of using a support as $SiO_2-Y_2O_3$, $Al_2O_3$, $SiO_2-ZrO_2$, and $SiO_2$, the selectivities of ethylamines and acetonitrile were not significantly different at similar ethanol conversion.

Fabrication of Electrochemical Microbial Biosensor Based on MWNT Supports Prepared by Radiation-Induced Graft Polymerization (방사선 그래프트법에 의해 제조된 탄소나노튜브 지지체를 기반으로 한 전기화학 미생물 바이오센서의 제작)

  • Shin, Soo-Ran;Kwen, Hai-Doo;Choi, Seong-Ho
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.216-222
    • /
    • 2011
  • A multi-walled carbon nanotube (MWNT) support with dual properties, an ionic property via tetra-amine and unpaired electrons via tri-amine, was prepared by radiation-induced graft polymerization of glycidyl methacrylate (GMA) and the subsequent amination of its epoxy group. The electrochemical microbial biosensor (EMB) was then fabricated by immobilization of a microbe (Alkaligenes spp.) onto the dual property-modified electrode, which was prepared with the mixture of the MWNT support and a $Nafion^{(R)}$ solution on a glass carbon (GC) electrode surface by a hand-casting method. The sensing range of the prepared EMB for phenol in a phosphate buffer solution was 0.005~7.0 mM. The total concentration of phenolic compounds in a commercial red wine was also determined using the EMB.

A Study on Dyeing Properties of Cafionicagent Treated Cotton Fibre with Reactive Dye (캐티온화제 처리한 면섬유에 대한 반응성 염료의 염색성)

  • Jung, Young Jin;Lee, Young Hee;Kim, Kyung Hwan
    • Textile Coloration and Finishing
    • /
    • v.6 no.4
    • /
    • pp.46-53
    • /
    • 1994
  • Polymer cationic agent was prepared by the initial polymerisation of epichlorohydrin followed by amination with diethylamine. Cotton fibre treated with the polymer (6~8% o.w.f.) is highly cationic and exhibit increased substantivity for reactive dyes under neutral to weakly acid conditions. The modified substrate could be dyed with reactive dyes without salt or a little salt from dye bath. The increased concentration of cationic agents resulted in an increase the colour yield. Futhermore, treated cotton has an electropositive surface charge. Adsorption of Reactive dye can be attributed to both van der waals force and electrostatic attraction.

  • PDF

A Study on Dyeing Properties of Cationic Agent Treated Cotton Fibre with Direct Dye (캐티온화제 처리한 면섬유의 집접 염료의 염색성)

  • Jung, Young Jin;Lee, Young Hee;Lee, Myoung Hane;Lee, Eon Pil
    • Textile Coloration and Finishing
    • /
    • v.7 no.2
    • /
    • pp.1-8
    • /
    • 1995
  • Polymer cationic agent was prepared by the initial polymerization of epichlorohydrin followed by amination with diethyl-amine. Cotton fibre treated with the polymer (6∼8% o.w.f.) is highly cationic and exhibit increased substantivity for anionic dyes. The modified substrate could be dyed with direct dyes without salt or a little salt from dye bath. The increased concentration of cationic agents resulted in an increase the colour yield. Futhermore, treated cotton has an electropositive surface charge. Adsorption of direct dye can be attributed to both van der waals force and electrostatic attraction.

  • PDF

Synthesis and Properties of Glucamine Derivatives with New Composition (새로운 조성을 갖는 글루카민 유도체의 합성 및 계면성)

  • Park, Seon-Young;Kim, Tae-Young;Jeong, Hwan-Kyeong;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.149-157
    • /
    • 2000
  • The synthesis of N-methyl glucamine was performed in two step reaction. The first step involves the amination between methylamine and glucose in methane. The N-methyl glucamine was obtained by the reduction of using Ni catalyst under the high pressure. The second step was glucamide anionic derivatives synthesis from N-methyl glucamine, maleic anhydride, lauryl alcohol and laurylamine by Schotten Banmann reaction respectively. Their molecular structures of N-methyl glucamine and glucamide (EG-MAS and AC-MAS) were investigated by IR and $^{1}H-NMR$. Basic physical properties and biodegradability of there glucamide anionic surfactant was investigated. The range of cmc values determined by measurements of surface tention was $10^{-5}{\sim}10^{-4}mol/l$ and the surface tension of the aqueous solution revealed in the range $28{\sim}30$ dyne/cm and their biodegradability was very good in the pH $5{\sim}10$.

Comparison of Enzymatic Activity and Cleavage Characteristics of Trypsin Immobilized by Covalent Conjugation and Affinity Interaction (공유결합과 친화력결합에 의한 고정화 Trypsin의 효소역가와 절단특성 비교)

  • Jang, Dae-Ho;Seong, Gi-Hun;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.279-285
    • /
    • 2006
  • We investigated the effects of immobilization chemistry on the yield of immobilization and the bioactivity of the immobilized enzymes. Trypsin as a model protein and macroporous polymer beads(Toyopearl AF 650M, Tosho Co., Japan) was used as a model matrix. Four methods were used to immobilize trypsin; covalent conjugation by reductive amination(at pH 10.0 and pH 4.0) and affinity interaction via streptavidin-biotin, and double-affinity interaction via biotin-streptavidin-biotin system. The covalent conjugation immobilized $3{\sim}4$ mg/ml-gel, ca. 3-fold higher than the affinity method. However, the specific activity of the covalently(pH 10.0) and affinity-immobilized trypsin(via streptavidin-biotin) are ca. 37% and 50%, respectively, of that of the soluble enzyme(on the low-molecular-weight BAPNA substrate). When the molecular size of a substrate increased, the affinity-immobilized trypsin showed higher clavage activity on insulin and BSA. This result seemed to indicate the streptavidin-biotin system allowed more steric flexibility of the immobilized trypsin in its interaction with a substrate molecule. To confirm this, we studied the molecular flexibility of immobilized trypsin using quartz crystal microbalance-dissipation. Self-assembled monolayers were formed on the Q-sensor surface by aminoalkanethiols, and gultaraldehyde was attached to the SAMs. Trypsin was immobilized in two ways: reductive amination(at pH 10.0) and the streptavidin-biotin system. The dissipation shift of the affinity-immobilized trypsin was $0.8{\times}10^{-6}$, whereas that of the covalently attached enzyme was almost zero. This result confirmed that the streptavidin-biotin system allowed higher molecular flexibility. These results suggested that the bioactivity of the immobilized enzyme be strongly dependent on its molecular flexibility.

Synthesis of Alginate-derived Polymeric Surfactants (알지네이트계 고분자 계면활성제의 합성)

  • 강현아
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.375-379
    • /
    • 2000
  • Alginate derivatives possessing various lengths of alkyl amine (C8, C12, C16) chain were prepared by oxidation followed by reductive amination of alginate and the products were characterized by spectral analysis. The surface tension critical micelle concentration (c. m. c) and solubility of a hydrophobic compound azobenzene were examined. Series of synthesized alginate-derived polymeric surfactants(APSs) reduced the surface tension. The dissolving capacity of APSs toward azobenzene was about half that of SDS. In order to investigate the capacity of metal adsorption Co and Pb were selected as a representative metal. The overall removal efficiency of APSs were high compared with that of alginate at pH 3.5 and 7 respectively. Major mechanism of the heavy metal removal is the complex of metal with carboxyl group.

  • PDF

Surface Modification of Nano Porous Silica Particle for Enzyme Immobilization (효소 고정화를 위안 실리카 나노세공 입자의 표면개질)

  • Cho, Hyung-Min;Kim, Jong-Kil;Kim, Ho-Kun;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.360-365
    • /
    • 2006
  • The objectives of this study were to develop nano-pore silica particles and to modify its surface for use as an enzyme immobilization matrix. Sol-gel reaction was used to produce silica particles of various nano pore sizes with hydroxyl groups on their surfaces. The surface was modified with aldehyde that was confirmed by fluorescence imaging. Trypsin was covalently immobilized by reductive amination. Surface density of the immobilized trypsin was ca. $350{\mu}g/m^2$, which was approximately 17- and 35-fold higher than those from the surfaces with hydroxyl and amine group, respectively. About 90% of the initial enzyme activity was maintained after the 12th use of repeated use. When compared with the commercial matrices, the nano-pore silica particle was superior in terms of immobilization yield and specific activity. This study suggests the nano porous silica particles can be used as enzyme immobilization matrix for industrial applications.

Ultrasonic, Chemical Stability and Preparation of Self-Assembled Fullerene$[C_{70}]$-Gold Nanoparticle Films (자기조립 풀러렌$[C_{70}]$-금 나노입자 필름 제조와 초음파적, 화학적 안정성)

  • Ko, Weon-Bae;Shon, Young-Seok
    • Elastomers and Composites
    • /
    • v.40 no.4
    • /
    • pp.272-276
    • /
    • 2005
  • [ $C_{70}$ ]-gold nanoparticle multilayer films were self-assembled using a 'dirt-ball' method on the reactive surface of glass slides functionalized with 3-aminopropyltrimethoxysilane. The functionalized glass slides were soaked in the solution containing both unmodified $C_{70}$ and ${\omega}$-amino-functionalized gold nanoparticles. Organic reaction (amination) facilitated the assembly of multilayer $C_{70}$-gold nanoparticle films, which have grown up to several layers. Chemical stability of $C_{70}$-gold nanoparticle films was studied by monitoring the changes in absorbance after the immersion of the films in acidic solution. In addition, ultrasonic stability of these nanoparticle films was studied by exposing them to ultrasonic irradiated surrounding, which resulted in partial desorption and a little aggregation of nanoparticles on solid surfaces.