• 제목/요약/키워드: surface adhesion

검색결과 2,035건 처리시간 0.022초

PET섬유와 $\alpha-Fe_2O_3$ 입자의 표면전하간 상호작용이 고형오구의 세척성에 미치는 영향 (Influence of Interaction of Surface Charges of PET Fiber and $\alpha$-Fe2O3 Particle on Detergency of Particulate Soil)

  • 강인숙
    • 한국의류학회지
    • /
    • 제22권8호
    • /
    • pp.1132-1140
    • /
    • 1998
  • The adhesion and removal of $\alpha$-Fe2O3 particles on the from PET fabric in NPE solution with different ionic strength were discussed in terms of interaction of surface charge of particle and substrate. The adhesion of $\alpha$-Fe2O3 particles to PET fabric and its removal from PET fabric were carried out by using water bath shaker and Terg-O-Tometer under various solution conditions. The ζ potential of PET fiber and $\alpha$-Fe2O3 particles in the detergent solution were measured by steaming potential and microelectrophoresis methods, respectively. The adhesion and removal amount of $\alpha$-Fe2O3 particles on the from PET fabric increased with increasing time of adhesion and removal, and the rates of adhesion and removal were high at the initial stage of adhesion and removal, and then the rates decreased with passing time. The adhesion and removal amount of $\alpha$-Fe2O3 particles on and from PET fabric increased with increasing pH of solution regardless ionic strength. The tendencies and degree of adhesion and removal were very similar regardless interaction of surface charge of particle and fiber. Therefore, in the presence of a surfactant and electrolyte, the influence of interaction of surface charge of particle and substrate on the detergency of particulate soil was small.

  • PDF

실린더 형태의 나노와이어와 표면 사이의 응착력 평가를 위한 분자동역학 시뮬레이션 연구 (Investigation of Adhesion force between Cylindrical Nanowire and Flat Surface through Molecular Dynamics Simulation)

  • 김현준
    • Tribology and Lubricants
    • /
    • 제31권6호
    • /
    • pp.264-271
    • /
    • 2015
  • Adhesion force of nanomaterials such as nanoparticle, nanowire, and nanorods should be significantly considered for its mechanical applications. However, examination of the adhesion force is limited since it is technically challenging to carry out experiments with such small objects. Therefore, in this work, molecular dynamics simulation (MDS) was conducted to determine the adhesion force between a nanowire and a flat surface, which could not be readily assessed through experiments. The adhesion force of a cylindrical-shaped nanowire was assessed by performing MDS and applying an equation of Van der Waals interaction. Simulation was conducted in two steps: indentation of a spherical tip on the flat surface and indentation of a cylinder on the flat surface, because the purpose of the simulation was comparing the results of the simulation and calculation of the Van der Waals interaction equation. From the simulation, Hamaker constant used for the equation of Van der Waals interaction was determined to be 2.93 °ø 10?18 J. Using this constant, the adhesion force of the nanowire on the flat surface was readily estimated by calculating Van der Waals equation to be approximately 65~89 nN with respect to the diameter of the nanowire. Moreover, the adhesion force of the nanowire was determined to be 52~77 nN from the simulation It was observed that there was a slight discrepancy (approximately 15~25%) between the results of the simulation and the theoretical calculation. Thus, it was confirmed that the calculation of Van der Waals interaction could be utilized to assess the adhesion force of the nanowire.

Effect of Zincate Treatment of As-Cast AZ91 Mg Alloy on Electrodeposition of Copper in a Copper Pyrophosphate Bath

  • Nguyen, Van Phuong;Park, Min-Sik;Yim, Chang Dong;You, Bong Sun;Moon, Sungmo
    • 한국표면공학회지
    • /
    • 제49권5호
    • /
    • pp.401-407
    • /
    • 2016
  • In this work, effect of zincate treatment of AZ91 Mg alloy on the following electrodeposition of copper was examined in a non-cyanide bath containing pyrophosphate ions in view of surface morphology and adhesion of the electrodeposited copper layer. Without zincate treatment, the electrodeposited copper layer showed very porous structure and poor adhesion. On the other hand, the copper layer electrodeposited on the zincate-treated surface showed dense structure and good adhesion. The dissolution rate of AZ91 Mg alloy after the zincate treatment appeared to decrease about 40 times in the copper pyrophosphate bath, as compared to that of the surface without zincate treatment. The porous morphology and poor adhesion of a copper layer on the AZ91 Mg alloy surface without zincate treatment were attributed to small number of nucleation sites of copper because of rapid dissolution of the magnesium substrate in the pyrophosphate bath. Based on the experimental results, it is concluded that the zincate treatment to form a conducting and protecting layer on the AZ91 Mg alloy surface is essential for successful electrodeposition of a copper layer on AZ91 Mg alloy with good adhesion and dense structure in the copper pyrophosphate bath.

HDD 내 디스크 표면 특성이 미세입자의 부착 및 이탈에 미치는 영향 (Effect of Characteristics of Disk Surface on Particle Adhesion and Removal in a Hard Disk Drive)

  • 박희성;좌성훈;황정호
    • Tribology and Lubricants
    • /
    • 제16권6호
    • /
    • pp.415-424
    • /
    • 2000
  • The use of magnetoresistive (MR) head requires much tighter control of particle contamination in a drive since loose particles on the disk surface will generate thermal asperities (TA). In this study, a spinoff test was performed to investigate the adhesion and removal capability of a particle to disk surface. Numerical simulation was also performed to investigate dominant factor of particle detachment and to support experimental results. It was shown that particles are detached from the disk surface by the moment derived from the centrifugal force and the drag force and that the centrifugal force and capillary force are the dominant force, which determines spin-off of a particle on the disk surface. Removal of particles smaller than several micrometers, which are the main source of TA generation, is extremely difficult since the adhesion forces exceed the centrifugal force. Lubricant types and manufacturing process also influence the particle removal. Lower bonding ratio and lower viscosity of the lubricant will help to increase the removal rate of the particles from the disk surface.

Influence of processing parameters for adhesion strength of TiAlN films prepared by Arc Ion Plating

  • 주윤곤;;조동율;윤재홍
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 추계학술대회 논문집
    • /
    • pp.136-137
    • /
    • 2007
  • Wear resistant TiAlN thin film has been widely deposited on the surface of cutting and forming tools by using Arc Ion Plating. TiAlN films are deposited by the processes designed by the Taguchi L18 experimental design. The L18 experimental design is applied to achieve surface properties and adhesion. The deposition parameters are working pressure, substrate temperature, bias voltage, arc power and pre-sputtering bias voltage and time. The most influential parameters on surface properties and adhesion are substrate bias voltage, working nitrogen pressure and arc power. The optimal coating processes are obtained for surface properties and adhesion.

  • PDF

표면전처리가 반응성 스퍼터링법으로 제조한 TiN 코팅층의 밀착력에 미치는 영향 (The Effects of Surface Pretreatments on Adhesion Strength of TiN Films by DC Magnetron Sputtering)

  • 김흥윤;백운승;권식철;김규호
    • 한국표면공학회지
    • /
    • 제26권5호
    • /
    • pp.225-234
    • /
    • 1993
  • Titanium nitride coatings were deposited onto SUS304 stainless steel substrates pretreated by mechanical scrubbing, chemical etching at 50% HCl solution and Ar ion etching. Adhesion strength were measured by scratch tester and confirmed by SEM with EDS. Adhesion strength of Ar ion etched substrate was 10 to 15 times higher than that of mechanical scrubbed or chemical etched substrate. Ar ion etching brought about an uniform and fine spherical shaped surface, while chemical etching gave rise to a rough and irregular surface on SEM micrograph. It was suggested that higher adhesion strength might be caused by anchoring effect of Ar ion etched surface prior to TiN deposition.

  • PDF

Ag/에폭시간 계면 접착력 향상을 위한 전해 실란 처리 (Electrolytic silane deposition to improve the interfacial adhesion Ag and epoxy substrate)

  • 공원효;박광렬;류호준;배인섭;강성일;최승회
    • 한국표면공학회지
    • /
    • 제56권1호
    • /
    • pp.77-83
    • /
    • 2023
  • The reliability of leadframe-based semiconductor package depends on the adhesion between metal and epoxy molding compound (EMC). In this study, the Ag surface was electrochemically treated in a solution containing silanes in order to improve the adhesion between Ag and epoxy substrate. After electrochemical treatment, the thin silane layer was deposited on the Ag surface, whereby the peel strength between Ag and epoxy substrate was clearly improved. The improvement of peel strength depended on the functional group of silane, implying the chemical linkage between Ag and epoxy.

Thin Film Adhesion and Cutting Performance in Diamond-Coated Carbide Tools

  • Jong Hee Kim;Dae Young Jung;Hee Kap Oh
    • The Korean Journal of Ceramics
    • /
    • 제3권2호
    • /
    • pp.105-109
    • /
    • 1997
  • The effects of surface conditions of the C-2 cemented carbide substrate on the adhesion of diamond film were investigated. The substrates were pretreated for different times with Murakami's reagent and then the acid solution of an H2SO4-H2O2. The adhesion strength was estimated by a peeling area around the Rockwell-A indentation. The cutting performance of the diamond-coated tools was evaluated by measuring flank wears in dry turning of Al-17% Si alloy. The morphology of deposited diamond crystallites was dominated by (111) and (220) surfaces with a cubooctahedral shape. The diamond film quality was hardly affected by the surface conditions of the substrate. The variation of tool life with longer substrate etching times resulted from a compromies between the increase of film adhesion at the interface and the decrease of toughness at the substrate surface. The coated tools were mainly deteriorated by chipping and flaking of the diamond film form a lock of adhesion strength, differently from the wear phenomena of PCD tools.

  • PDF

고주파 아크 금속용사기를 이용한 금속용사 코팅계의 부착강도 평가 (Evaluation of the Adhesion Strength of Metal Spray Coating System in Steel using High-frequency Arc Metal Spray Method)

  • 최홍복;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.96-97
    • /
    • 2014
  • The purpose of this study is to analyze the adhesion strength of metal spray coating system in steel using high-frequency arc metal spray method. For the purpose the experimental factor such as surface roughness was selected at 3 levels. As a result of experiment, it appeared that high-frequency arc metal spray method had higher adhesion strength than existing metal spray method. Especially, Al-Mg showed the highest adhesion strength than other metals. In case of surface roughness, the higher roughness steel has, the higher adhesion strength appeared.

  • PDF

플라즈마 질화처리한 사출금형소재의 비정질 탄소계 박막 증착에 따른 기계적 특성 향상 효과 (The effect of mechanical properties of carbon-based thin film on plasma nitrided injection mold steel )

  • 김혜민;김대욱
    • 한국표면공학회지
    • /
    • 제56권5호
    • /
    • pp.328-334
    • /
    • 2023
  • The carbon-based films have various properties, which have been widely applied in industrial application. However, it has critical drawback for poor adhesion between films and metal substrate. In the present work, we have deposited carbon-based films on injection mold steel by plasma assisted chemical vapor deposition (PACVD). In order to improve adhesion, prior to film deposition, the substrate was nitriding-treated using PACVD. And its effect on the adhesion was investigated. Due to the pre-nitriding, the amorphous carbon nitride (a-CN:H) films presented 10 times higher adhesion (34.9 N) than that of un-nitirided. In addition, a friction coefficient was decreased from 0.29 to 0.15 for the amorphous carbon (a-C:H) due to improved adhesion. The obtained results demonstrated that pre-nitriding considerably improved the adhesion, and the relationship among adhesion, hardness, and surface roughness was discussed in detail.