• Title/Summary/Keyword: surface $fCO_2$

Search Result 237, Processing Time 0.023 seconds

Process Optimization for the Industrialization of Transparent Conducting Film (투명 전도막의 산업화를 위한 공정 최적화)

  • Nam, Hyeon-bin;Choi, Yo-seok;Kim, In-su;Kim, Gyung-jun;Park, Seong-su;Lee, Ja Hyun
    • Industry Promotion Research
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • In the rapidly advancing information society, electronic devices, including smartphones and tablets, are increasingly digitized and equipped with high-performance features such as flexible displays. This study focused on optimizing the manufacturing process for Transparent Conductive Films (TCF) by using the cost-effective conductive polymer PEDOT and transparent substrate PET as alternatives to expensive materials in flexible display technology. The variables considered are production speed (m/min), coating maximum temperature (℃), and PEDOT supply speed (rpm), with surface resistivity (Ω/□) as the response parameter, using Response Surface Methodology (RSM). Optimization results indicate the ideal conditions for production: a speed of 22.16 m/min, coating temperature of 125.28℃, and PEDOT supply at 522.79 rpm. Statistical analysis validates the reliability of the results (F value: 18.37, P-value: < 0.0001, R2: 0.9430). Under optimal conditions, the predicted surface resistivity is 145.75 Ω/□, closely aligned with the experimental value of 142.97 Ω/□. Applying these findings to mass production processes is expected to enhance production yields and decrease defect rates compared to current practices. This research provides valuable insights for the advancement of flexible display manufacturing.

Experimental Study on Structural Behavior of Interfaces of Double Composite Girder Using the 80 MPa Concrete (80 MPa급 콘크리트를 활용한 이중합성 거더의 수평접합면 구조거동에 관한 실험적 연구)

  • Yang, In-Wook;Lim, Eol;Ha, Tae-Yul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.400-413
    • /
    • 2016
  • The horizontal shear capacity when the flange of a steel girder is replaced with 80 MPa concrete is important for its structural safety. In this study, 6 specimens with different interface conditions were designed and fabricated based on the Limit State Design Code on Korean Highway Bridges and static tests were performed to measure the horizontal shear capacity. Not only the resistance factors of the stud shear connector, concrete and reinforcement, but also the surface conditions of the casing concrete and spacing of the horizontal shear reinforcements were used as the experimental variables. The experiments showed that the interfaces between the steel girder and the concrete flange have stronger joint performance than those between the concrete flange and deck slab. To ensure the composite action in the plastic zone, the conservative horizontal shear reinforcement is more important than the roughness in the concrete face.

Inward Diffusion of Tb Ions and the Magnetic Properties of the Nd-Fe-B Magnets (열처리 조건에 따른 Tb이온의 확산 및 Nd-Fe-B 자석의 자기적 특성)

  • Oh, Seong-Uk;Kim, Dong-Whan;Gong, Gun-Seung;Heo, Young-Woo;Kim, Jeong-Joo;Lee, Joon-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.27-31
    • /
    • 2017
  • In this study, the effect of Tb inward diffusion on the magnetic properties of the Nd-Fe-B sintered magnets was studied. After sintering of the magnets, $TbF_3$ slurries were dip-coated on the surface of the samples, then heat-treatment was followed for $TbF_3$ diffusion. The element distribution in the magnets and the diffusion profiles of Tb ions were analyzed by an EPMA (electron probe micro-analyzer). Prolonged heat treatment resulted in a deeper diffusion length of Tb ions. Coercivity of the $1^{st}$ heat-treated sample showed 21.86 kOe, while that of the $1^{st}$, $2^{nd}$ heat-treated and annealed sample revealed 34 kOe.

Performance of Electric Double Layers Capacitor Using Activated Carbon Materials from Rice Husk as Electrodes

  • Nguyen, Tuan Dung;Ryu, Jae Kyung;Bramhe, Sachin N.;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.643-648
    • /
    • 2013
  • Activated carbon (AC) was synthesized from rice husks using the chemical activation method with KOH, NaOH, a combination of (NaOH + $Na_2CO_3$), and a combination of (KOH + $K_2CO_3$) as the chemical activating reagents. The activated carbon with the highest surface area (around $2000m^2/g$) and high porosity, which allows the absorption of a large number of ions, was applied as electrode material in electric double layer capacitors (EDLCs). The AC for EDLC electrodes is required to have a high surface area and an optimal pore size distribution; these are important to attain high specific capacitance of the EDLC electrodes. The electrodes were fabricated by compounding the rice husk activated carbons with super-P and mixed with polyvinylidene difluoride (PVDF) at a weight ratio of 83:10:7. AC electrodes and nickel foams were assembled with potassium hydroxide (KOH) solution as the electrolyte. Electrochemical measurements were carried out with a three electrode cell using 6 M KOH as electrolyte and Hg/HgO as the reference electrode. The specific capacitance strongly depends on the pore structure; the highest specific capacitance was 179 F/g, obtained for the AC with the highest specific surface area. Additionally, different activation times, levels of heating, and chemical reagents were used to compare and determine the optimal parameters for obtaining high surface area of the activated carbon.

Could Natural Products Confer Inhibition of SARS-CoV-2 Main Protease? In-silico Drug Discovery

  • Mohamed-Elamir F Hegazy
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.14-14
    • /
    • 2020
  • In December 2019, the COVID-19 epidemic was discovered in Wuhan, China, and since has disseminated around the world impacting human health for millions. Herein, in-silico drug discovery approaches were utilized to identify potential candidates as Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) inhibitors. We investigated several databases including natural and natural-like products (>100,000 molecules), DrugBank database (10,036 drugs), major metabolites isolated from daily used spices (32 molecules), and current clinical drug candidates for the treatment of COVID-19 (18 drugs). All tested compounds were prepared and screened using molecular docking techniques. Based on the calculated docking scores, the top ones from each project under investigation were selected and subjected to molecular dynamics (MD) simulations followed by molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. Combined long MD simulations and MM-GBSA calculations revealed the potent compounds with prospective binding affinities against Mpro. Structural and energetic analyses over the simulated time demonstrated the high stabilities of the selected compounds. Our results showed that 4-bis([1,3]dioxolo)pyran-5-carboxamide derivatives (natural and natural-like products database), DB02388 and Cobicistat (DB09065) (DrugBank database), salvianolic acid A (spices secondary metabolites) and TMC-310911 (clinical-trial drugs database) exhibited high binding affinities with SARS-CoV-2 Mpro. In conclusion, these compounds are up-and-coming anti-COVID-19 drug candidates that warrant further detailed in vitro and in vivo experimental estimations.

  • PDF

Effect of Plating Condition and Plating Rate on the Magnetic Properties of Electroless Co-Cu-P Deposits (무전해 Co-Cu-P 도금층의 자성에 미치는 도금조건과 도금속도의 영향)

  • Oh, I.S.;Park, S.D.
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.36-43
    • /
    • 2004
  • The effect of bath composition, plating condition and plating rate on the magnetic property of electroless Co-Cu-P deposits were investigated. With increasing $CuCl_2$ concentration in the bath, plating rate increased, while the Br value of deposit decreased sharply. Deposited surface were inferiority by the increase pH above 10.5, bath temperature higher than $80^{\circ}C$. Plating reaction had been ceased by the increase of pH above 11, bath temperature higher than $90^{\circ}C$ and under $40^{\circ}C$. The Br value of deposit was uniform with various concentration of complexing agent(sodium citrate) in the bath. The Br value of deposit was almost equal to that found by the addition of stabilizer (thiourea) and accelerator(NaF). The Br value of deposit was uniform in plating time(20min) and heat treatment temperature(below $200^{\circ}C$), and were confirmed to have adequate bath stability for practical use.

  • PDF

Effects of Retort Sterilization on Quality Characteristics of the Imitation Crab Leg (레토르트 살균처리가 게맛어묵의 품질특성에 미치는 영향)

  • Kang, Jin-Yeong;Yun, Jae-Ung;Hwang, Seok-Min;Kang, Jeong-Gu;Kim, Nam-Woo;Oh, Kwang-Soo
    • Journal of agriculture & life science
    • /
    • v.44 no.6
    • /
    • pp.147-157
    • /
    • 2010
  • This study was carried out to develop the normal temperature-circulatable retort sterilized imitation crab leg (RSIC) with long shelf-life by retort sterilization. We have examined the optimum retort sterilization conditions and quality characteristics of the RSIC. Central composite design for response surface methodology (RSM) was adopted for optimization of retort sterilization, and experimental central composite design consisted of 11 samples such as 4 factorial points; 4 star points; 3 central points. Sterilization temperature and $F_0-value$ for retort sterilization were chosen for independent variables, and shearing force, whiteness and sensory score about texture were selected as a dependent variable. As a results of RSM analysis, multiple response optimization for the RSIC by Minitap statistical programing was $F_0-value$ 3.3 min. at $117.5{^{\circ}C}$. Also RSM analysis indicated such as sterilization temperature during retort sterilization was the most influential factor, while $F_0-value$ little affected on quality of the RSIC.

An Experimental Evaluation on Performance of Surface Protector for Concrete Structures (콘크리트 구조물 표면 보호재의 성능에 대한 실험적 평가)

  • Nam, Yong-Hyuk;Chung, Young-Jun;Jang, Suk-Hwan;An, Young-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.157-163
    • /
    • 2006
  • This study is on the evaluation of double surface protection method using water repellent primer and final top coat to protect concrete. Water repellent agent has been applied on the final top coat to protect concrete. However, to make up for the weakness to the ultraviolet of the water repellent, the work procedure of these protectors is done vice versa. This combination of protectors was compared with existing ones in this study. Even though the final top coat was applied on the water repellent primer, its adhesive strength met to KS F 4936-' 03 with other protectors used in this study. All surface protectors used in this study were excellent in protecting concrete. Especially, in case of applying with final top coat in conjunction with water repellent primer, the resistance against chloride ion penetration and neutralization by $CO_2$ was more efficient than other surface protectors used in this study under this given condition.

Surface properties and interception behaviors of GO-TiO2 modified PVDF hollow fiber membrane

  • Li, Dongmei;Liang, Jinling;Huang, Mingzhu;Huang, Jun;Feng, Li;Li, Shaoxiu;Zhan, Yongshi
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.113-120
    • /
    • 2019
  • To investigate surface properties and interception performances of the new modified PVDF membrane coated with Graphene Oxide (GO) and nano-$TiO_2$ (for short the modified membrane) via the interface polymerization method combined with the pumping suction filtration way, filtration experiments of the modified membrane on Humic Acid (HA) were conducted. Results showed that the contact angle (characterizing the hydrophilicity) of the modified membrane decreased from $80.6{\pm}1.8^{\circ}$ to $38.6{\pm}1.2^{\circ}$. The F element of PVDF membrane surface decreased from 60.91% to 17.79% after covered with GO and $TiO_2$. O/C element mass ratio has a fivefold increase, the percentage of O element on the modified membrane surface increased from 3.83 wt% to 20.87%. The modified membrane surface was packed with hydrophilic polar groups (like -COOH, -OH, C-O, C=O, N-H) and a functional hydrophilic GO-polyamide-$TiO_2$ composite configuration. This configuration provided a rigid network structure for the firm attachment of GO and $TiO_2$ on the surface of the membrane and for a higher flux as well. The total flux attenuation rate of the modified membrane decreased to 35.6% while 51.2% for the original one. The irreversible attenuation rate has dropped 71%. The static interception amount of HA on the modified membrane was $158.6mg/m^2$, a half of that of the original one ($295.0mg/m^2$). The flux recovery rate was increased by 50%. The interception rate of the modified membrane on HA increased by 12% approximately and its filtration cycle was 2-3 times of that of the original membrane.

Effects of Anodic Voltages of Photcatalytic TiO2 and Doping in H2SO4 Solutions on the Photocatalytic Activity (광촉매 TiO2의 황산용액에서의 양극산화전압과 도핑이 광촉매 활성에 미치는 영향)

  • Lee, Seung-Hyun;Oh, Han-Jun;Chi, Choong-Soo
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.439-444
    • /
    • 2012
  • To compare the photocatalytic performances of titania for purification of waste water according to applied voltages and doping, $TiO_2$ films were prepared in a 1.0 M $H_2SO_4$ solution containing $NH_4F$ at different anodic voltages. Chemical bonding states of F-N-codoped $TiO_2$ were analyzed using surface X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the co-doped $TiO_2$ films was analyzed by the degradation of aniline blue solution. Nanotubes were formed with thicknesses of 200-300 nm for the films anodized at 30 V, but porous morphology was generated with pores of 1-2 ${\mu}m$ for the $TiO_2$ anodized at 180 V. The phenomenon of spark discharge was initiated at about 98 V due to the breakdown of the oxide films in both solutions. XPS analysis revealed the spectra of F1s at 684.3 eV and N1s at 399.8 eV for the $TiO_2$ anodized in the $H_2SO_4-NH_4F$ solution at 180 V, suggesting the incorporation of F and N species during anodization. Dye removal rates for the pure $TiO_2$ anodized at 30 V and 180 V were found to be 14.0% and 38.9%, respectively, in the photocatalytic degradation test of the aniline blue solution for 200 min irradiation; the rates for the F-N-codoped $TiO_2$ anodized at 30 V and 180 V were found to be 21.2% and 65.6%, respectively. From the results of diffuse reflectance absorption spectroscopy (DRS), it was found that the absorption edge of the F-N-codoped $TiO_2$ films shifted toward the visible light region up to 412 nm, indicating that the photocatalytic activity of $TiO_2$ is improved by appropriate doping of F and N by the addition of $NH_4F$.