• Title/Summary/Keyword: supporting pressure control

Search Result 36, Processing Time 0.024 seconds

New Seat Design and Finite Element Analysis for Anti-Leakage of Globe Valve (글로브 밸브의 누설방지를 위한 시트 설계 및 유한요소해석)

  • Lee, Sung Ho;Kang, Gyeong Ah;Kwak, Jae-Seob;An, Ju Eun;Jin, Dong Hyun;Kim, Byung Tak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.81-86
    • /
    • 2016
  • The valves used to control or shut off the flow through a pipeline can be divided into many different types, including gate valves, globe valves, and check valves. Globe valves, in particular, have excellent properties, and because they can easily control the flow under high-pressure conditions, they are generally used in LNG ship and steam pipelines. In this paper, a method for changing the shape of a seat was suggested to solve the valve leakage problem from a structural perspective. In addition, the stress distribution and directional deformation were compared for each model. The suggested models were thus validated, and the optimized seat structure, which includes a self-supporting capability for decreasing the amount of leakage, was determined.

Design and Experiment of an Assistive Device for a Knee Joint of a Disabled Person Using an MR Damper (MR 댐퍼를 이용한 장애인의 무릎관절 보조 장치 설계 및 실험)

  • Jeon, Hyeong-Jin;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.579-585
    • /
    • 2010
  • In this paper, an assistive device for a knee joint to help a disabled person to stand up by supporting power is presented. The device is designed and controlled by using damping characteristics of the MR (Magneto-Rheological) damper. The MR damper helps the person to sit slowly and safely. A DC motor supports muscle power in the case of standing motion. Thus the device helps the disabled person to sit down and stand up. Through the experiments, it is feasible that an assistive device can help the disabled person to standup according to the foot pressure change.

An Advanced Study on the Development of Marine Lifting Devices Enhanced by the Blowing Techniques

  • Ahn Haeseong;Yoo Jaehoon;Kim Hyochul
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.4
    • /
    • pp.1-9
    • /
    • 2004
  • High lifting devices used for control purposes have received much attention in the marine field. Hydrofoils for supporting the hull, roll stabilizer fins for developing the motion damping performance, rudders for maneuverability are the well-known devices. In the present study, the ability of the rudder with flap to produce high lift was analyzed. The boundary layer control, one of the flow control techniques, was adopted. Especially, to build the blown flap, a typical and representative type of a boundary layer control, a flapped rudder was designed and manufactured so that it could eject the water jet from the gap between the main foil and the flap to the flap surface tangentially. And it was tested in the towing tank. Simultaneously, to know the information about the 2-dimensional flow field, a fin model with similar characteristics as the rudder model applicable for the motion control was made and tested in the cavitation tunnel. In addition, local flow measurements were carried out to obtain physical information, for example, a surface pressure measurement and flow visualization around the flap. And CFD simulation was used to obtain information difficult to collect from the experiment about the 2-dimensional flow.

A Numerical Study Of Flow Control Valve to Flow Characteristics by Pressure Difference for Hydrogen Station (수소충전소용 유량제어 밸브의 차압에 따른 유동특성에 대한 수치해석적 연구)

  • Nam, Chung-Woo;Kim, Rak-Min;Kim, Hyun-Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.28-33
    • /
    • 2021
  • With the recent growing interest in eco-friendly cars, as interest in eco-friendly cars increases, interest and purchase of hydrogen fuel cell vehicles that do not emit pollutants are increasing. Recently, the government is supporting the expansion of hydrogen charging station and localization of core parts according to the government's hydrogen energy dissemination policy. In this study, the flow characteristics of the hydrogen flow control valve were investigated. As the differential pressure increases, the mass flow rate and flow coefficient tend to be different from the volume flow rate. And it was confirmed that it affects the hydrogen temperature due to the nozzle effect in the bottleneck section, and the change in density affects the mass flow rate.

Wind load analysis for designing a tracking solar generator (추적식 태양광 발전기 설계를 위한 풍하중 해석)

  • Kim, Young-Eun;Jeong, Kyu-Won;Lee, Jae-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.672-680
    • /
    • 2017
  • A solar photovoltaic system is composed of a module mounting structure, supporting trunk, and a control unit that supplies generated electrical power to an external power grid or a load. The efficiency of the system depends on the incident solar light, so the mounting structure is installed to face the sun. However, because the sun always moves, systems that track the sun have better efficiency than fixed systems. The structure experiences wind pressure, snow load, seismic load, and structure weight. The wind pressure has the most serious effect on the structure. The pressure was obtained using finite element method for various gaps between modules and angles between the panel and the ground. The wind pressure is lowest when the gap is zero, and it increases with the inclination angle. Based on the results, a mounting structure module was designed.

Effect of the support pressure modes on face stability during shield tunneling

  • Dalong Jin;Yinzun Yang;Rui Zhang;Dajun Yuan;Kang Zhang
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.417-426
    • /
    • 2024
  • Shield tunneling method is widely used to build tunnels in complex geological environment. Stability control of tunnel face is the key to the safety of projects. To improve the excavation efficiency or perform equipment maintenance, the excavation chamber sometimes is not fully filled with support medium, which can reduce the load and increase tunneling speed while easily lead to ground collapse. Due to the high risk of the face failure under non-fully support mode, the tunnel face stability should be carefully evaluated. Whether compressive air is required for compensation and how much air pressure should be provided need to be determined accurately. Based on the upper bound theorem of limit analysis, a non-fully support rotational failure model is developed in this study. The failure mechanism of the model is verified by numerical simulation. It shows that increasing the density of supporting medium could significantly improve the stability of tunnel face while the increase of tunnel diameter would be unfavorable for the face stability. The critical support ratio is used to evaluate the face failure under the nonfully support mode, which could be an important index to determine whether the specific unsupported height could be allowed during shield tunneling. To avoid of face failure under the non-fully support mode, several charts are provided for the assessment of compressed air pressure, which could help engineers to determine the required air pressure for face stability.

CQI Action Team Approach to Prevent Pressure Sores in Intensive Care Unit of an Acute Hospital Korea (중환자의 욕창 예방 연구 : 욕창 예방 QI팀을 중심으로)

  • Kang, So Young;Choi, Eun-Kyung;Kim, Jin-Ju;Ju, Mi-Jung
    • Quality Improvement in Health Care
    • /
    • v.4 no.1
    • /
    • pp.50-63
    • /
    • 1997
  • Background : A pressure sore was defined as any skin lesion caused by unrelieved pressure and resulting in damage to underlying tissue. The health care institutions in the United States were reported the incident rate of pressure sores ranging from 6 to 14 %. Intensive Care Unit needed highest quality of care has been found over 40% incidence rate of pressure sore. Also, Annual expenditures for the care of pressure sores in patients in the United States have been estimated to be $7.5 billion; furthermore, 50 percent more nursing time is required to care for patients with pressure sore in comparison to the time needed to implement preventive measures against pressure sore formation. However, In Korea, there were little reliable reports, or researches, about incidence rates of pressure sore in health care institution including intensive care unit and about the integrated approach like CQI action team for risk assessment, prevention and treatment of pressure ulcers. Therefore, this study was to develop pressure sore risk assessment tool and the protocol for prevention of pressure sore formation through CQI action team activities, to monitor incident rate of pressure sore and the length of sore formation for patients at high risk, and to approximately estimate nursing time for sore dressing during research period as the effect of CQI action team. Method : CQI action team in intensive care unit, launched since early 1996, reviewed the literature for the standardized risk assessment tool, developed the pressure sore assessment tool based on the Braden Scale, tested its validity, compared on statistics including incidence rate of pressure sore for patients at high risk. Throughout these activities, CQI action team was developed the protocol, called as St. Marys hospital Intensive Care Unit Pressure Sore Protocol, shifted the emphasis from wound treatment to wound prevention. After applied the protocol to patients at high risk, the incident rate and the period of prevention against pressure development were tested with those for patients who received care before implementation of protocol by Chi-square and Kaplan-Meier Method of Survival Analysis. Result : The CQI action team found that these was significant difference of in incidence rate of pressure sores between patients at high risk (control group) who received care before implementation of protocol and those (experimental group) who received it after implementation of protocol (p<.05). 25% possibility of pressure sore formation was shown for the patients with 6th hospital day in ICU in control group. In experimental group, the patients with 10th hospital day had 10% possibility of pressure sore. Therefore, there was significant difference(p<.05) in survival rate between two groups. Also, nursing time for dressing on pressure sore in experimental group was decreased as much as 50% of it in control group. Conclusion : The collaborative team effort led to reduced incidence, increased the length of prevention against pressure sore, and declined nursing care times for sore dressing. However, there have had several suggestions for future study. The preventive care system for pressure sore should be applied to patients at moderate, or low risk throughout continuous CQI team activities based on Bed Sore Indicator Fact Sheet. Hospital-wide supports, such as incentives, would be offered to participants for keeping strong commitment to CQI team. Also, Quality Information System monitoring incidents and estimating cost of poor quality, like workload (full time equivalence) or financial loss, regularly in a hospital has to be developed first for supporting CQI team activities as well as empowering hospital-wide QI implementation. Being several limitations, this study would be one of the report cards for the CQI team activities in intensive care unit of an acute hospital and a trial of quality improvement of health care in Korea.

  • PDF

STUDY ON VERTICAL DISPLACEMENT OF SOFT TISSUE UNDER DISTAL EXTENSION PARTIAL DENTURE BASE BY FUNCTIONAL IMPRESSION (유리단 국소의치의 기능 인상에 의한 연조직의 수직적 변위량에 관한 연구)

  • Lee, Kwang-Hee;Chang, IK-Tai
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.21 no.1
    • /
    • pp.59-66
    • /
    • 1983
  • Distal extension partial dentures are supported by both the relatively rigid teeth and the resilient mucosa. So impression techniques of residual alveolar ridge in case of distal extension partial denture have particular importance in order to broad distribution of the masticatory force. McLean recognized the need for recording the tissues supporting distal extension partial denture base in functional form to equalize the resilient and non-resilient support, and this was called functional impression. Many investigators proposed various techniques of the functional impression for a distal extension partial denture, but only a little studies were performed about displacement of soft tissue under distal extension partial denture base. The purpose of this study is to investigate the amount of vertical displacement of the soft tissue under distal extension partial denture base by different functional impression techniques. Impression techniques used were Z.O.P. Impression, Selective Tissue Placement Impression, Functional Relining Impression. Measurement of the vertical displacement of soft tissue were made with Depth Gauge and Measuring Platform. A Anatomic Impression was used as a control. The results were tested statistically using 3 way ANOVA and Scheffe test. The followings were the results obtained from this study. 1. The greatest amount of soft tissue displacement was observed in the center of the retromolar pad. 2. No significant differences were found between the crest of alveolar ridge and the buccal shelf area. 3. The greatest soft tissue displacement was observed in Functional Relining Impression using Iowa wax, and the least displacement was observed in Selective Tissue Placement Impression using murcaptan rubber base. 4. No significant differences were found between finger pressure and biting pressure in Z.O.P. Impression, but greater displacement was observed by biting pressure than finger pressure in Functional Reling Impression.

  • PDF

Lateral Earth Pressures Acting on Anchored Diaphragm Walls and Deformation Behavior of Walls during Excavation (지하굴착시 앵커지지 지중연속벽에 작용하는 측방토압 및 벽체의 변형거동)

  • Hong, Won-Pyo;Lee, Moon-Ku;Lee, Jae-Ho;Yun, Jung-Mann
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.77-88
    • /
    • 2007
  • Lateral earth pressure and horizontal displacement of the diaphragm walls constructed in multi-soil layers were analyzed by the field instrumentation from six building construction sites in urban area. The distribution of the developed earth pressure of the anchored diaphragm walls during excavation shows approximately a trapezoid diagram. The maximum earth pressure of anchored diaphragm walls corresponds to $0.45{\gamma}H$ and the earth pressure acts at the upper part of the walls. The maximum earth pressure is two times larger than the empirical earth pressure of flexible walls in sands suggested by Terzaghi and Peck(1967), Tschebotarioff(1973), and Hong and Yun(1995a). The horizontal displacement of diaphragm walls is closely related with supporting systems such as struts, anchors, and so on. The horizontal displacement of anchored walls shows less than 0.1 percent of the excavated depth, and the horizontal displacement of strutted walls shows less than 0.25 percent of the excavated depth. Therefore, the restraining effect of horizontal displacement to the anchored diaphragm walls is larger than the strutted diaphragm walls. In addition, since the horizontal displacement of the diaphragm walls is lower than the criterion, $\delta=0.25%H$, used for control the anchored retention wall using soilder piles, the safety of excavation sites applied with the diaphragm walls is pretty excellent.

A Study on Frequency Characteristics of a Bender Type High-Speed Piezoelectric Pneumatic Valve (벤더형 고응답 압전밸브의 주파수 특성에 관한 연구)

  • Yun, S.N.;Ham, Y.B.;Park, J.H.;Lee, S.S.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.14-18
    • /
    • 2012
  • Two kinds of piezoelectric actuator are applied to the valve for controlling the direction, the flow and the pressure of the fluid. One is a stack type piezoelectric actuator which has very fast response characteristics but very tiny displacement. The other is a bender type piezoelectric actuator which has also fast response characteristics but lower than the stack type one, and has longer displacement than the stack type one. So, the bender type piezoelectric actuator has advantage to apply to the valve for controlling a large amount of flow and fast on-off operating. In this study, the bender type piezoelectric pneumatic valve for color sorter is designed and fabricated. The new type high speed piezo valve with the both side supporting mechanism for high operating frequency and high reliability is discussed for separating the foreign body from the grains. Finally, the performance characteristics of a fabricated valve are analyzed and the frequency characteristics are also discussed for substituting the conventional type solenoid actuator.