• Title/Summary/Keyword: supporting load

Search Result 515, Processing Time 0.029 seconds

A Study on the Supporting Systeim to Household Work (가정노동의 지원체계확립을 위한 연구)

  • 정영금
    • Journal of Families and Better Life
    • /
    • v.17 no.3
    • /
    • pp.83-92
    • /
    • 1999
  • Many Policies were made to increase women's employment since the latter half of the 1980s in Korean. But work-family conflict of married women can not be solved without reducing the household work load, because all of Korean wives have the responsibilities of household work. So this study aims to establish the supporting system of household work in the women's policies. For this purpose this study examine the actual conditions for supporting the household work. And supporting system and strategies for policy making related to household work and suggested. Supporting system includes arrangement in household raise in social consciousness improvement of market circumstance establishment of relating acts and public facilities.

  • PDF

Finite element analysis of stress distribution on supporting bone of posterior implant partial dentures by loading location (유한요소 분석을 이용한 하중 위치에 따른 구치부 임플란트 국소의치 지지골의 응력 분포 연구)

  • Son, Sung-Sik;Kim, Young-Jick;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.29 no.1
    • /
    • pp.93-101
    • /
    • 2007
  • The purpose of this study is to evaluate the effect of three different oblique mechanical loading to occlusal surfaces of posterior implant partial dentures on the stress distributions in surrounding bone, using 3-dimensional finite element method. A 3-dimensional finite element model of a posterior implant partial dentures composed of three unit implants, simplified 3 gold alloy crown and supporting bone was developed according to the design of AVANA self tapping implant for this study. Three kinds of surface distributed oblique loads(300 N) are applied to following occlusal surfaces in the three crowns; 1) All occlusal surfaces in the three crown(load of 300 N was shared to three crown), 2) Occlusal surface of centered crown (load of 300 N was applied to a centered crown), 3) Occlusal surface of proximal crown(load of 300 N was applied to a distal proximal crown). In the results, 141 MPa of maximum von Mises stress was calculated at third loading condition and 98 MPa of minimum von Mises stress was calculated at first loading condition. From the results, location and type of occlusive loading conditions are important for the safety of supporting bone.

  • PDF

A Comparative Analysis of Stress Distribution in the Implant Supporting Bone by Occlusal Loading location Utilizing the Finite Element Method (유한요소법을 이용한 교합 하중 위치에 따른 임플란트 지지골의 응력분포 비교분석)

  • Lee, Myung-Kon;Kim, Young-Jick;Kim, Chi-Young
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.105-113
    • /
    • 2005
  • The purpose of this study is to evaluate the effect of loading at three different occlusal surface position of the gold alloy crown on the stress distributions in surrounding bone, utilizing 3-dimensional finite element method. A three dimensional finite element model of an implant with simplified gold alloy crown and supporting bone was developed for this study. A oblique or vertical load of 100 N was applied at the following position at each FE model : 1) center of occlusal surface, 2) a point on the buccal side away from center of occlusal surface (COS) by 2.8mm, 3) a point on the lingual side away from COS by 2.8mm. In the results, Minimum von Mises stresses under vertical load or oblique load of 100N were about 6MPa at the center of occlusal surface and about 40MPa at the point on the buccal side, respectively. From the results we could come to the conclusion that occlusive loading position could be an important factor for establishment of structural safety of supporting bone.

  • PDF

Optimal Force Distribution for Compliance Control of Multi-legged Walking Robots (다각 보행로보트의 순응 제어를 위한 힘의 최적 분배)

  • Ra, In-Hwan;Yang, Won-Young;Chung, Tae-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.874-876
    • /
    • 1995
  • Force and compliance control has been used in the control of legged walking vehicles to achieve superior terrain adaptability on rough terrains. The compliance control requires distribution of the vehicle load over the supporting legs. However, the constraint equations for ground reaction forces of supporting legs are generally underdetermined, allowing an infinite number of solutions. Thus, it is possible to apply an optimization criteria in solving the force setpoint problem. It has been observed that the previous force setpoint optimization methods sometimes cause a system stability problem and/or the load distribution among supporting legs is not well balanced due to a memory effect on the solution trajectory, This paper presents an iterative force setpoint method to solve this problem using an interpolation technique. By simulation it was shown that an excessive load unbalance among supporting legs and the memory effect in the force trajectory are alleviated much with the proposed method.

  • PDF

Finite element analysis on the stress of supporting bone by diameters and lengths of dental implant fixture (유한요소법을 이용한 치과 임플란트 고정체의 직경과 길이에 따른 지지골의 응력 분석)

  • Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.38 no.3
    • /
    • pp.151-156
    • /
    • 2016
  • Purpose: The dental implant should be enough to endure chewing load and it's required to have efficient design and use of implant to disperse the stress into bones properly. This study was to evaluate the stress distribution on a supporting bone by lengths and diameters of the implant fixture. Methods: The modeling and analysis of stress distribution was used for the simple molar porcelain crown model by Solidworks as FEM program. It was designed on applying with tightening torque of 20 Ncm of a abutment screw between a cement retained crown abutment and a fixture. The fixtures of experimental model used 10, 13mm by length and 4, 5mm by diameter. A external vertical loading on the two buccal cusps of crown and performed finite element analysis by 100 N. Results: The maximum von Mises stress(VMS) of all supporting bone models by fixture length and diameter were concentrated on the upper side of supporting compact bone. The maximum stress of each model under vertical load were 164.9 MPa of M410 model, and 141.2 MPa of M413 model, 54.3 MPa of M510 model, 53.6 MPa of M513 model. Conclusion: The stress reduction was increase of fixture's diameter than it's length. So it's effective to use the wider fixture as possible to the conditions of supporting bone.

A Study on the Occurrence and A change in the times of the Nemok-dori (내목도리의 발생과 시대적 변화에 관한 연구)

  • Heo, Kyoung-Do;Chung, Myung-Sup
    • Journal of architectural history
    • /
    • v.29 no.1
    • /
    • pp.39-49
    • /
    • 2020
  • A dapo type bracket system which consists of chuganpo(柱間包) and chusangpo(柱上包) with a fake-beam adopted a nemok-dori member to cope with oemok-dori member in order to obtain balance between the outer-side and the inner-side of the bracket system. The middle part of the longest rater in the dapo system is supported by three points made by oemok-dori, jusim-dori and nemok-dori members and the area between the rafer supporting points forms a supporting area. The increase of rafter supporting points and supporting area leads to heightening the structural stability and the efficiency of load delivery. In the eave of dapo system the portion where the three supporting points formed by oemok-dori, jusim-dori and nemok-dori members shows as 33% in the early period, 71% in the middle period and 78% in the later period. On the contrary the portion where more than one of the three dori members were omitted shows as 67% in the early period, 29% in the middle period and 22% in the later period. This is the result of the increase of the number and the distance of steps in the dapo bracket system as time goes on. This is because the structural role of three supporting points becomes important as the increase of distance between the dori members leads to the increase of load which burdens on each dori member.

Seismic Performance of RC Circular Colunm-Bent Piers under Bidirectional Repeated Loadings according to Main Loading Direction (2축 반복하중을 받는 2주형 RC 원형교각의 주하중방향에 따른 내진성능평가)

  • Park, Chang-Kyu;Lee, Beom-Gi;Yun, Sang-Cheol;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.284-291
    • /
    • 2005
  • A RC column-bent pier represents one of the most popular piers used in highway bridges. Seismic performance of reinforced concrete (RC) column-bent piers under bidirectional seismic loadings was experimentally investigated. Six column bent-piers were constructed with two circular supporting columns which were made in 400mm diameter and 2,000mm height. Test parameters are different transverse reinforcement and loading pattern. These piers were tested under lateral load reversals with the axial load of $0.1f_{ck}A_g$. Three specimens were subjected to bidirectional lateral load cycles which consisted of two main longitudinal loads and two sub transverse loads in one load cycle. Other three specimens were loaded in the opposite way. Test results indicated that lateral strength and ductility of the latter three specimens were generally bigger than those of the former three specimens. Plastic hinges were formed with the spall of cover concrete and the fracture of the longitudinal reinforcing steels in the bottom plastic hinge of two supporting columns for the former three specimens. Similar behavior was observed in the top and bottom parts of two supporting columns for the latter three specimens.

  • PDF

A study on improvement of wind-resistance characteristics of the structure supporting road sign (도로표지판 지지구조물의 내풍성능 향상에 관한 연구)

  • Son, Yong-Chun;Park, Su-Yeong;Im, Jong-Guk;Sin, Min-Cheol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.485-488
    • /
    • 2008
  • The structure supporting road sign is a road information facility for ensuring the safe transportation and smooth traffic. But, lots of road information facilities were damaged by the typhoon "Maemi" in 2003. Such damaged facilities should be rehabilitated and could increase economic loss by causing traffic accident. Therefore, in this study, behavior that reduce wind load and improve wind resistance of the structure supporting road sign are studied about wind load beyond design specification by abnormal climate as below. The first is wind load reducing technique such that shear key resist wind load that is not greater than design wind speed but in case that it is over the design wind limit, column member is rotated on the inner steel pipe axis by the brittle failure of shear key. The second is the technique such that fail-safe the overturning of road sign panel by equipment installation in the vertical member. The third is the technique of installing stiffening plate inside the vertical member to relieve stress concentration.

  • PDF

EFFECT OF ANCHORAGE SYSTEMS AND PALATAL COVERAGE OF DENTURE BASE ON LOAD TRANSFER WITH MAXILLARY IMPLANT-SUPPORTING OVERDENTURES : A THREE-DIMENSIONAL PHOTOELASTIC STRESS ANALYSIS (상악 임플란트 overdenture에서 anchorage system과 의치상 구개피개가 하중전달에 미치는 영향)

  • Je, Hong-Ji;Jeon, Young-Chan;Jeong, Chang-Mo;Lim, Jang-Seop;Hwang, Jai-Sug
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.4
    • /
    • pp.397-411
    • /
    • 2004
  • Purpose: The purpose of this study was to determine the effect of anchorage systems and palatal coverage of denture base on load transfer in maxillary implant-supported overdenture. Material and methods: Maxillary implant -supported overdentures in which 4 implants were placed in the anterior region of edentulous maxilla were fabricated, and stress distribution patterns in implant supporting bone in the case of unilateral vertical loading on maxillary right first molar were compared with each other depending on various types of anchorage system and palatal coverage extent of denture base using three-dimensional photoelastic stress analysis. Two photoelastic overdenture models were fabricated in each anchorage system to compare with the palatal coverage extent of denture base, as a result we got eight models : Hader bar using clips(type 1), cantilevered Hader bar using clips(type 2), Hader bar using clip and ERA attachments(type 3), cantilevered milled-bar using swivel-latchs and frictional pins(type 4). Result: 1. In all experimental models, the highest stress was concentrated on the most distal implant supporting bone on loaded side. 2. In every experimental models with or without palatal coverage of denture base, maximum fringe orders on the distal ipsilateral implant supporting bone in an ascending order is as follows; type 3, type 1, type 4, and type 2. 3. Each implants showed compressive stresses in all experimental models with palatal coverage of denture base, but in the case of those without palatal coverage of denture base, tensile stresses were observed in the distal contralateral implant supporting bone. 4. In all anchorage system without palatal coverage of denture base, higher stresses were concentrated on the most distal implant supporting bone on loaded side. 5. The type of anchorage system affected in load transfer more than palatal coverage extent of the denture base. Conclusion: To the results mentioned above, in the case of patients with unfavorable biomechanical conditions such as not sufficient number of supporting implants, short length of the implant, and poor bone quality, selecting a resilient type attachment or minimizing the distal cantilevered bar is considered to be an appropriate method to prevent overloading on implants by reducing cantilever effect and gaining more support from the distal residual ridge.

STRESS ANALYSIS AT SUPPORTING TISSUE OF ABUTMENT TEETH AND RESIDUAL RIDGE ACCORDING TO DENTURE DESIGN WITH REMAINING UNILATERAL POSTERIOR TEETH (편측 후방 치아 잔존시 의치 설계에 따른 지대치지지 조직과 잔존 치조제의 응력 분석에 관한 연구)

  • Ahn, Kwang-Ho;Jung, Young-Wan;Jin, Tai-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.2
    • /
    • pp.185-199
    • /
    • 1999
  • This study was peformed to investigate the distribution and magnitude of stress at supporting tissue of abutment teeth and residual ridge tissue with remaining unilateral posterior teeth. Four types of removable partial dentures that included clasp retained removable partial denture, attachment retained removable partial denture, telescopic removable partial denture, and swing-lock partial denture were designed, and strain gauge was used for stress analysis. Each prosthesis was subjected to simulated vertical and oblique load. The following conclusions were drawn from this study. 1. The clasp retained removable partial denture generally distributed simulated vertical force more evenly to the supporting structure. 2. The stress at buccal side of 1st premolar was the lowest in swing-lock partial denture and that was highest in attchment retained removable partial denture. The stress at lingual side of 1st premolar was the lowest in telescopic partial denture. 3. In clasp retained removable partial denture, stress was lower at load site and ridge crest at mid-line, but it was higher at 1st premolar area on vertical load. 4. In attachment removable partial denture, stresses at buccal side of 1st premolar. lingual side of 1st premolar on vertical load, and ridge crest at midline on oblique load were higher. 5. In telescopic removable partial denture, stress at lingual side of 1st premolar was the least in all removable partial dentures, but the stress at load site was higher. 6. In swing-lock removable partial denture, stress at buccal side of 1st premolar was the lowest, and stresses at load site and distal end of residual ridge crest were higher.

  • PDF