• Title/Summary/Keyword: supporting force

Search Result 386, Processing Time 0.025 seconds

The Kinetic and EMG Analysis about Supporting Leg of Uke in Judo (유도 허벅다리걸기 기술 발휘 시 지지발에 대한 근전도 및 운동역학적 분석)

  • Park, Jong-Yul;Kim, Tae-Wan;Choi, In-Ae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.197-205
    • /
    • 2007
  • The purpose of this study is to analyze the muscle activations and Ground Reaction Force(GRF) in university judo players, and provide the guide of training in Judo. Using surface electrode electromyography(EMG), we evaluated muscle activity in 5 university judo players during the Judo Uke Movements. Surface electrodes were used to record the level of muscle activity in the Tibialis Anterior, Rectus Femoris, Elector Spinae, Gluteus Maximus, Gastrocnemius muscles during the Uke. These signals were compared with %RVC(Reference voluntary contraction) which was normalized by IEMG(Integrated EMG). The Uke was divided into four phases : Kuzushi-1, Kuzushi-2, Tsukuri, Kake. The results can be summarized as follows: 1. The effective Uke Movements needs to short time in the Kake Phase 2. The Analysis of Electromyography of Uke Movements in Supporting Leg; TA(Tibialis anterior) had Higher %RVC in the Kuzushi Phase, RF(Rectus Femoris) had Higher %RVC in the Tsukuri Phase, GM(Gluteus Maximus) had Higher %RVC in the Kake Phase 3. The ground reaction force for Z(vertical) direction was showed increase tendency in Kuzushi phase, Tsukuri phase and decrease tendency in Kake phase.

Wear Analysis of a Vibrating Tube supported by Thin Strip Springs incorporating the Supporting Conditions (얇은 판 스프링에 의해 지지되는 튜브의 진동 시 지지조건에 따른 마멸분석)

  • Kim, Hyeong-Gyu;Ha, Jae-Uk;Lee, Yeong-Ho;Heo, Seong-Pil;Gang, Heung-Seok
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.63-70
    • /
    • 2002
  • Wear on the tube-to-spring contact is investigated experimentally. The wear is caused by the vibration of the tube while the springs support it. As for the supporting conditions, applied are the contacting normal force (P) of 5 N, just-contact (P = 0 N) and the gap of 0.1 mm. The gap condition is tried far considering the influence of simultaneous impacting and sliding on wear. Results show that the wear volume increases in the order of the gap, the just-contact and the 5 N conditions. This is explained from the contact geometry of the spring, which is convex of smooth contour. The contact shear force is regarded smaller in the case of the gap existence compared with the other conditions. Wear mechanism is considered from SEM observation of the worn surface. The variation of the normal contact traction is analysed using the finite element analysis to estimate the slip displacement range on the contact with consulting the fretting map previously obtained.

  • PDF

Design of Cam Contour for Constant Hangers (등하중지지대의 캠 윤곽 설계)

  • Lee, Gun-Myung;Park, Mun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.669-675
    • /
    • 2011
  • A constant hanger is a device for supporting pipes in plants. It supplies a constant force to a supporting pipe even if the pipe moves because of thermal expansion. In this paper, we propose a method for designing the contour of a cam for a constant hanger. It has been shown that the contour of a cam must satisfy the geometrical relation of the cam, the force balance equation for the load tube, the relation between the side spring compression and the cam rotation angle, and the moment balance equation for the cam. A calculation procedure to solve these equations simultaneously is proposed, and a constant hanger is designed successfully.

Fluid-structure interaction of a tensile fabric structure subjected to different wind speeds

  • Valdes-Vazquez, Jesus G.;Garcia-Soto, Adrian D.;Hernandez-Martinez, Alejandro;Nava, Jose L.
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.533-548
    • /
    • 2020
  • Despite the current technologic developments, failures in existent tensile fabric structures (TFS) subjected to wind do happen. However, design pressure coefficients are only obtained for large projects. Moreover, studies on TFSs with realistic supporting frames, comparing static and dynamic analyses and discussing the design implications, are lacking. In this study, fluid-Structure analyses of a TFS supported by masts and inclined cables, by subjecting it to different wind speeds, are carried out, to gain more understanding in the above-referred aspects. Wind-induced stresses in the fabric and axial forces in masts and cables are assessed for a hypar by using computational fluid dynamics. Comparisons are carried out versus an equivalent static analysis and also versus loadings deemed representative for design. The procedure includes the so-called form-finding, a finite element formulation for the TFS and the fluid formulation. The selected structure is deemed realistic, since the supporting frame is included and the shape and geometry of the TFS are not uncommon. It is found that by carrying out an equivalent static analysis with the determined pressure coefficients, differences of up to 24% for stresses in the fabric, 5.4% for the compressive force in the masts and 21% for the tensile force in the cables are found with respect to results of the dynamic analysis. If wind loads commonly considered for design are used, significant differences are also found, specially for the reactions at the supporting frame. The results in this study can be used as an aid by designers and researchers.

Cracking Reason Analysis of Concrete Lining Segment with TBM Driving (TBM 진행에 따른 라이닝 세그먼트 균열 원인 분석)

  • Kim, Moon-Kyum;Jang, Kyung-Gook;Won, Jong-Hwa;Kim, Tae-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.624-629
    • /
    • 2008
  • When TBM excavates a tunnel, existing concrete lining segments are used as supporting structures for driving force. Axial stress on the lining segments are apt to be large in case of direct driving force. However, it drastically decline as it is farther and father from TBM and later, it tends to converge after a certain point. Such tendencies show similar results of finite element analysis. At the initial intervals, the values of finite element analysis are larger, while at the later intervals, the actual stress values are larger. It concludes that such tendencies are attributable to that the concrete lining segments have partially burst and cracked in the axial direction at the initial intervals. And differences of stresses at the later intervals are created by the changed plasticity of ground and the friction on the external sides of the lining segments.

  • PDF

Weightlessness in Water : Its Unexpected Mechanical Effects on Freestyle Swimming

  • Yanai, Toshimasa
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.393-405
    • /
    • 2002
  • When our body is immersed in water, we experience weightlessness. The degree of weightlessness that we experience varies depending on the proportion of the body immersed in water, being governed by the relationship between the weight of body and the buoyant force acting on the body. Human body during the performance of swimming in no exception to these influences. Swimmers body is subject to a time and position dependent force system. Even the magnitude of the buoyant force acting on the swimmers body at every given instant and the corresponding position of the CB change continuously. The findings of this study support the following conclusions. The buoyancy torque was the primary source of bodyroll exhibited by front crawl swimmers performing at distance pace, accounting for 88 % of the bodyroll. Faster swimmers used buoyancy more effectively to generate bodyroll, partially supporting the postulation that an effective use of buoyancy for bodyroll may reduce the generated hydrodynamic forces to be wasted in non-propulsive directions and maximize forward propulsion.

The analysis of the single transformer by using F.E.M (F.E.M.을 이용한 단상 변압기의 전자력 해석)

  • Lee, Hyun-Jin;Huh, Chang-Su;Jeong, Jung-Il;Cho, Han-Goo;Park, Yeong-Doo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.855-858
    • /
    • 2001
  • The single transformer appeared the electro-magnetic force must be constructed to support it. it must construct the single transformer to supporting the electro-magnetic force appeared by the cut-off current. the problem is that the electro-magnetic occurs the modification of the single transformer and an serious accident. In the case of the molding-transformer, the part of the molding cast used in the construction occurs the crack, because of the strong force. therefore, in this paper, the molding material used in the molding-transformer is settled by comparing the results from commercial soft ware of F.E.M and a out-equipment circuit.

  • PDF

The Relationship between a Wear Depth :and a Decrease of the Contacting Force in the Nuclear Fuel Fretting (핵연료봉 프레팅마멸에서 마멸깊이와 접촉하중 감소사이의 관계)

  • Lee Young-Ho;Kim Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.22 no.1
    • /
    • pp.8-13
    • /
    • 2006
  • Sliding wear tests have been performed to evaluate the effect of normal load decrease on the wear depth of nuclear fuel rods in room temperature air. The objectives of this study are to quantitatively evaluate the supporting ability of spacer grid springs, to estimate the wear depth by using the contacting force decrease and to compare the wear behavior with increasing test cycles (up to $10^7$) at each spring condition. The result showed that the contacting load decrease depends on the spring shape and the applied slip amplitude. The estimated wear depth is smaller when compared with measured wear depth. Based on the test results, the wear mechanism, the role of wear debris layer and the spring shape effect were discussed.

A Study on the Force Reflection Joystick Method or controlling Rehabilitation Assisting System (재활 보조 시스템 제어를 위한 힘 반향 조이스틱 기법에 관한 연구)

  • Hong, J.P.;Lee, E.H.;Kim, B.S.;Kim, S.H.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.507-510
    • /
    • 1997
  • In this paper, we proposed force reflection method using joystick or controlling rehabilitation assisting mobile robot. We defined reflected orce equation as two terms. One is distance between mobile robot and obstacle, the other is speed of rehabilitation assisting robot. And we found the each gain value which guarantees stable navigation of robot. And we experimented simulation with simulation program supporting virtual 2-D map. Through the experiments, we confirmed force reflection algorithm is efficient when controlling rehabilitation assisting robot.

  • PDF

Optimum Alignment of Marine Engine Shaftings by the Finite Element Method (有限要素法에 의한 舶用機關軸系裝置의 最適配置에 關한 硏究)

  • Jeon, Hio-Jung;Park, Jin-Gil;Choi, Jae-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.3-14
    • /
    • 1978
  • The authors have developed a calculating method of propeller shaft alignment by the finite element method. The propeller shaft is divided into finite elements which can be treated as uniform section bars. For each element, the nodal point equation is derived from the stiffness matrix, the external force vector and the section force vector. Then the overall nodal point equation is derived from the element nodal point equation. The deflection, offset, bending moment and shearing force of each nodal point are calculated from the overall nodal point equation by the digital computer. Reactions and deflections of supporting points of straight shaft are calculated and also the reaction influence number is derived. With the reaction influence number the optimum alignment condition that satisfies all conditions is calculated by the simplex method of linear programming. All results of calculation are compared with those of Det norske Veritas, which has developed a computor program based on the three-moment theorem of the strength of materials. The authors finite element method has shown good results and will be used effectively to design the propeller shaft alignment.

  • PDF