• Title/Summary/Keyword: supported catalysts

Search Result 350, Processing Time 0.028 seconds

Preparation and Electroactivities of Carbon Nanotubes-supported Metal Catalyst Electrodes Prepared by a Potential Cycling

  • Kim, Seok;Jung, Yong-Ju;Park, Soo-Jin
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.213-216
    • /
    • 2009
  • The electrochemical deposition of Pt nanoparticles on carbon nanotubes (CNTs) supports and their catalytic activities for methanol electro-oxidation were investigated. Pt catalysts of 4~12 nm average crystalline size were grown on supports by potential cycling methods. Electro-plating of 12 min time by potential cycling method was sufficient to obtain small crystalline size 4.5 nm particles, showing a good electrochemical activity. The catalysts' loading contents were enhanced by increasing the deposition time. The crystalline sizes and morphology of the Pt/support catalysts were evaluated using X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The electrochemical behaviors of the Pt/support catalysts were investigated according to their characteristic current-potential curves in a methanol solution. In the result, the electrochemical activity increased with increased plating time, reaching the maximum at 12 min, and then decreased. The enhanced electroactivity for catalysts was correlated to the crystalline size and dispersion state of the catalysts.

The Equilibrium Model of MoO$_3$ Containing Phases Supported in Silica

  • Lee, Do-Hyun;Ha, Jin-Wook
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.287-289
    • /
    • 2001
  • The morphology of silica supported MoO$_3$ catalysts, which was prepared by impregnation of ammonium heptamolybdate with various weight loadings up to 35 wt%, was studied using x-ray diffraction. In addition to the orthorhombic phase, the behavior of the rarely studied hexagonal phase was characterized. For high loading catalysts, excess ammonium ions present in the monoclinic and triclinic precursors are capable of occupying interstitial sites of microcrystalline MoO$_3$ during moderate temperature calcinations and in doing so enhance the MoO$_3$-SiO$_2$ interaction. This results in a "well dispersed" morphology at high loadings. Sintering at high temperature is due to loss of ammonium from the oxide framework. Ammonia reimpregnation, which leads back to the well dispersed hexagonal phase, may offer a simple regeneration process for spent Mo containing catalysts.

Environmentally Friendly Synthesis of Amide by Metal-catalyzed Nitrile Hydration in Aqueous Medium (수중에서 금속 촉매의 니트릴 수화 반응에 의한 환경친화적 아미드 합성)

  • Hussain, Muhammad Asif;Kim, Jung Won
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.128-131
    • /
    • 2015
  • Hydration of nitriles in the environmentally benign neutral conditions is the most economical and attractive way to produce amides. Substantial research works have been carried out to apply the solid metal oxides and transition metal supported catalytic systems to promote the hydration of nitriles. The most significant feature of these catalysts is the applicability to a wide range of substrates including aromatic, alicyclic, hetero-atomic, and aliphatic nitriles. These catalysts are also characterized by the easy isolation from the reaction mixture and the reusability while maintaining the high catalytic activity. This review accounts over the detailed survey of the metal oxide and solid supported metal catalysts for preparing amides from the hydration of nitriles.

DeNOx by SCR (Selective Catalytic Reduction) Using LPG as a Reductant (LPG-SCR에 의한 질소산화물 제거)

  • Kim, Moon-Chan
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.588-593
    • /
    • 2012
  • In this study, selective catalytic reduction (SCR) reaction was performed using liqufied petroleum gas (LPG) as a reductant for removing NOx. The catalysts were manufactured with different amounts of Cu and Fe supported on HZSM-5 in order to remove NOx. The NOx conversion ratio was studied with changing the temperature and the catalyst amount. The catalysts were manufactured by calcination with flowing the ambient air at $500^{\circ}C$ for three hours. Cupper of 1~4 wt% and iron of 0.5~2 wt% were supported on HZSM-5 of which Si/Al ratio were 80. According to the reaction results, the catalyst which Cu of 3 wt% supported on HZSM-5 showed the highest conversion rate. XRD, XPS, and TPR analysis were also performed for the characterization of catalysts.

Characteristics of ZrO2 Felt Supported Cu/Zn Catalyst for Methanol Steam Reforming (메탄올 수증기개질을 위한 ZrO2 펠트 기반 Cu/Zn 촉매 특성 연구)

  • CHOI, EUNYEONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.129-136
    • /
    • 2017
  • Characteristics of $ZrO_2$ felt supported Cu/Zn catalysts have been investigated for the production of hydrogen via methanol steam reforming. Cu and Zn in different weight percent were loaded using wet impregnation over $ZrO_2$ felt support. The catalysts were characterized with BET and FE-SEM. The performance of these synthesized catalysts were investigated at SCR=1.5, $GHSV=2000h^{-1}$, temperature=$300{\sim}400^{\circ}C$, and pressure=2.5~19.5 barA. The results showed that the $Cu^{32.5}Zn^{7.5}ZrO_2$ catalyst was most active in terms of methanol conversion and hydrogen production. The methanol conversion in steam reforming of methanol was 84.6% at 19.5 barA and furnace $400^{\circ}C$ over $Cu^{32.5}Zn^{7.5}ZrO_2$ catalyst. The catalysts prepared using $ZrO_2$ felt show higher reactor temperature than the pellet type catalyst at same furnace temperature.

Acid Treatments of Carbon Nanotubes and Their Application as Pt-Ru/CNT Anode Catalysts for Proton Exchange Membrane Fuel Cell

  • Kim, Min-Sik;Lim, Sin-Muk;Song, Min-Young;Cho, Hyun-Jin;Choi, Yun-Ho;Yu, Jong-Sung
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.336-342
    • /
    • 2010
  • Different oxidation treatments on CNTs using diluted 4.0 M $H_2SO_4$ solution at room temperature and or at $90^{\circ}C$ reflux conditions were investigated to elucidate the physical and chemical changes occurring on the treated CNTs, which might have significant effects on their performance as catalyst supports in PEM fuel cells. Raman spectroscopy, X-ray diffraction and transmission electron microscope analyses were made for the acid treated CNTs to determine the particle size and distribution of the CNT-supported Pt-Ru nanoparticles. These CNT-supported Pt-based nanoparticles were then employed as anode catalysts in PEMFC to investigate their catalytic activity and single-cell performance towards $H_2$ oxidation. Based on PEMFC performance results, refluxed Pt-Ru/CNT catalysts prepared using CNTs treated at $90^{\circ}C$ for 0.5 h as anode have shown better catalytic activity and PEMFC polarization performance than those of the commercially available Pt-Ru/C catalyst from ETEK and other Pt-Ru/CNT catalysts developed using raw CNT, thus demonstrating the importance of acid treatment in improving and optimizing the surface properties of catalyst support.

CO and C3H8 Oxidations over Supported Co3O4, Pt and Co3O4-Pt Catalysts: Effect on Their Preparation Methods and Supports, and Catalyst Deactivation (Co3O4, Pt 및 Co3O4-Pt 담지 촉매상에서 CO/C3H8 산화반응: 담체 및 제조법에 따른 영향과 촉매 비활성화)

  • Kim, Moon-Hyeon;Kim, Dong-Woo;Ham, Sung-Won
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.251-260
    • /
    • 2011
  • $TiO_2$- and $SiO_2$-supported $Co_3O_4$, Pt and $Co_3O_4$-Pt catalysts have been studied for CO and $C_3H_8$ oxidations at temperatures less than $250^{\circ}C$ which is a lower limit of light-off temperatures to oxidize them during emission test cycles of gasoline-fueled automotives with TWCs (three-way catalytic converters) consisting mainly of Pt, Pd and Rh. All the catalysts after appropriate activation such as calcination at $350^{\circ}C$ and reduction at $400^{\circ}C$ exhibited significant dependence on both their preparation techniques and supports upon CO oxidation at chosen temperatures. A Pt/$TiO_2$ catalyst prepared by using an ion-exchange method (IE) has much better activity for such CO oxidation because of smaller Pt nanoparticles, compared to a supported Pt obtained via an incipient wetness (IW). Supported $Co_3O_4$-only catalysts are very active for CO oxidation even at $100^{\circ}C$, but the use of $TiO_2$ as a support and the IW technique give the best performances. These effects on supports and preparation methods were indicated for $Co_3O_4$-Pt catalysts. Based on activity profiles of CO oxidation at $100^{\circ}C$ over a physical mixture of supported Pt and $Co_3O_4$ after activation under different conditions, and typical light-off temperatures of CO and unburned hydrocarbons in common TWCs as tested for $C_3H_8$ oxidation at $250^{\circ}C$ with a Pt-exchanged $SiO_2$ catalyst, this study may offer an useful approach to substitute $Co_3O_4$ for a part of platinum group metals, particularly Pt, thereby lowering the usage of the precious metals.

Dechlorination of HCFC-142b over Supported Pd Catalysts and Solid Acid Catalysts (Pd담지촉매와 고체산촉매를 이용한 HCFC-142b의 탈염소반응)

  • Han, K.Y.;Seo, K.W.;Mok, Y.I.;Park, K.Y.;Ahn, B.S.
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.372-376
    • /
    • 1998
  • Supported Pd($Pd/AlF_3$, $Pd/{\gamma}-Al_2O_3$) catalysts and solid-acid catalysts(${\gamma}-Al_2O_3$, ${\alpha}-Al_2O_3$, $AlF_3$) were used to perform dechlorination of HCFC-142b(1-chloro-1,1-difluoroethane) in the presence of excess hydrogen. In the reactions the effects of reaction temperature, the mole ratio(r) of $H_2$ to HCFC-142b and the amount of supported Pd on dechlorination of HCFC-142b into HFC-143a(1,1,1-trifluoroethane) or HFC-152a(1,1-difluoroethane) were investigated. The experimental results showed that the conversion of HCFC-142b to product gases were 60% and 92%, respectively, and the selectivity to HFC-143a in the product gases were 58% and 64% for $Pd/AlF_3$ and $Pd/{\gamma}-Al_2O_3$ catalysts, respectively. On these catalysts an optimum reaction condition was found at $200^{\circ}C$ with the space time of reactant gases as 1.05 second and the mole ratio of $H_2$ to HCFC-142b as 3. Solid-acid catalysts were also tested at the same reaction condition. The results showed that the conversions of HCFC-142b to product gases were 12%, 8% and 7%, and the selectivities to HFC-152a were 94%, 92% and 90% for ${\gamma}-Al_2O_3$, ${\alpha}-Al_2O_3$ and $AlF_3$ catalysts, respectively.

  • PDF

Effect of Vanadium Oxide Loading on SCR Activity and $SO_2$ Resistance over $TiO_2$-Supported $V_2O_5/TiO_2$ Commercial De-NOx Catalysts (상용 $V_2O_5/TiO_2$ 촉매의 바나듐 함량이 SCR 반응성과 $SO_2$ 내구성에 미치는 영향)

  • Park, Kwang Hee;Cha, Wang Seog
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.485-489
    • /
    • 2012
  • We investigated vanadium (V) loading effects on selective catalytic reduction (SCR) activity and $SO_2$ resistance using commercial SCR catalysts applied on a power plant and incinerator with different amounts of V loading. These catalysts were characterized using XRD, Raman, ICP, BET analysis and found to contain $TiO_2$ (anatase) supported $V_2O_5$ added $WO_3$ and $SiO_2$. The SCR activity of the catalysts increased by increasing either the $V_2O_5$ or the $WO_3$ loading amounts; the SCR activity of the catalysts added $WO_3$ is higher than that of $WO_3$-free catalysts. As the V loading amount in the catalyst increased, the $SO_2$ durability decreased. The $V_2O_5$ supported $TiO_2$ catalyst added $WO_3$ and $SiO_2$ inhibits the deactivation process by $SO_2$. The $SO_2$ resistance of catalysts added $SiO_2$ is higher than that of catalysts added $WO_3$.

Catalytic Reactions of Ethanol and Acetaldehyde Over $TiO_2$-supported Gold Catalysts

  • Kim, Jeong-Jin;Kim, Yu-Gwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.264-264
    • /
    • 2012
  • As an environment-friendly alternative energy resource, ethanol may be used to obtain hydrogen, a clean energy source. Thus, studies on catalytic reactions involving ethanol have been studied to understand the underlying principles in the reaction mechanism using various oxide-supported catalysts. Among them, Au-based catalysts have shown a superior activity in producing hydrogen gas. In the present study, Au/$TiO_2$ catalysts were prepared by deposition-precipitation method to understand their catalytic activities toward ethanol and acetaldehyde with increasing gold loading, especially at the very low Au loading regime. A commercially available $TiO_2$ (Degussa P-25) was employed and the Au loading was varied to 0, 0.1, 0.5, and 1.0 wt% respectively. The catalysts showed characteristic x-ray diffraction (XRD) features at $2{\theta}=78.5^{\circ}$ that could be assigned to the presence of gold nanoparticles. Its reactivity measurements were performed under a constant flow of ethanol and acetaldehyde at a flow rate of ${\sim}0.6{\mu}mol/sec$ and the substrate temperature was slowly raised at a rate of 0.2 K/sec. We observed that the overall reactivity of the catalysts increased with increasing Au loading along with selectivity favoring dehydrogenation to product hydrogen gas. In addition, we disclosed various reaction channels involving competitive reaction paths such as dehydrogenation, dehydration, and condensation. In addition, subsequent reactions of acetaldehyde obtained from dehydrogenation of ethanol, were found to occur and produce butene, crotonaldehyde, furan, and benzene. Based on the results, we proposed overall reaction pathways of such reaction channels.

  • PDF