• Title/Summary/Keyword: support vector machines (SVM)

Search Result 286, Processing Time 0.028 seconds

A MULTICOLOR STAR-GALAXY SEPARATION FROM THE NIR AND MIR AKARI DATA

  • Solarz, A.;Pollo, A.;Takeuchi, T.T.;Pepiak, A.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.151-152
    • /
    • 2012
  • We present the method of star/galaxy separation based on the support vector machines (SVM) in the data from the AKARI North Ecliptic Pole (NEP) Deep survey collected through nine AKARI / IRC bands from 2 to $24{\mu}m$, with a classification accuracy of 93 %.

Person Authentication using Multi-Modal Biometrics (다중생체인식을 이용한 사용자 인증)

  • 이경희;최우용;지형근;반성범;정용화
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2003.07a
    • /
    • pp.204-207
    • /
    • 2003
  • 생체인식 기술은 전통적인 비밀번호 방식 또는 토큰 방식보다 신뢰성 면에서 더 선호되지만, 환경의 영향에 매우 민감하여 성능의 한계가 있다. 이러한 단일 생체인식 기술의 한계를 극복하기 위하여 여러 종류의 생체 정보를 결합한 다중 생체인식 (multimodal biometrics)에 관한 다양한 연구가 진행되고 있다 본 논문에서는 다중 생체인식 기술을 간략히 소개하고, Support Vector Machines(SVM)을 이용하여 얼굴 및 음성 정보를 함께 이용한 다중 생체인식 실험으로 성능이 개선될 수 있음을 확인하였다.

  • PDF

Determining the Dependency among Clauses based on SVM (SVM을 이용한 절-절 간의 의존관계 설정)

  • Kim, Mi-Young
    • The KIPS Transactions:PartB
    • /
    • v.14B no.2
    • /
    • pp.141-144
    • /
    • 2007
  • The longer the input sentences, the worse the syntactic parsing results, Therefore, a long sentence is first divided into several clauses and syntactic analysis for each clause is performed. Finally, all the analysis results art merged into one, In the merging process, it is difficult to determine the dependency among clauses, To handle such syntactic ambiguity among clauses, this paper proposes an SVM-based clause-dependency determination method. We extract various features from clauses, and analyze the effect of each feature on the performance. We also compare the performance of our proposed method with those of previous methods.

Cascaded Parsing Korean Sentences Using Grammatical Relations (문법관계 정보를 이용한 단계적 한국어 구문 분석)

  • Lee, Song-Wook
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.69-72
    • /
    • 2008
  • This study aims to identify dependency structures in Korean sentences with the cascaded chunking. In the first stage of the cascade, we find chunks of NP and guess grammatical relations (GRs) using Support Vector Machine (SVM) classifiers for all possible modifier-head pairs of chunks in terms of GR categories as subject, object, complement, adverbial, etc. In the next stages, we filter out incorrect modifier-head relations in each cascade for its corresponding GR using the SVM classifiers and the characteristics of the Korean language such as distance between relations, no-crossing and case property. Through an experiment with a parsed and GR tagged corpus for training the proposed parser, we achieved an overall accuracy of 85.7%.

Performance Improvements of Brain-Computer Interface Systems based on Variance-Considered Machines (Variance-Considered Machine에 기반한 Brain-Computer Interface 시스템의 성능 향상)

  • Yeom, Hong-Gi;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.153-158
    • /
    • 2010
  • This paper showed the possibilities of performance improvement of Brain-Computer Interface (BCI) decreasing classification error rates of EEG signals by applying Variance-Considered Machine (VCM) which proposed in our previous study. BCI means controlling system such as computer by brain signals. There are many factors which affect performances of BCI. In this paper, we used suggested algorithm as a classification algorithm, the most important factor of the system, and showed the increased correct rates. For the experiments, we used data which are measured during imaginary movements of left hand and foot. The results indicated that superiority of VCM by comparing error rates of the VCM and SVM. We had shown excellence of VCM with theoretical results and simulation results. In this study, superiority of VCM is demonstrated by error rates of real data.

Efficient Implementation of SVM-Based Speech/Music Classifier by Utilizing Temporal Locality (시간적 근접성 향상을 통한 효율적인 SVM 기반 음성/음악 분류기의 구현 방법)

  • Lim, Chung-Soo;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.149-156
    • /
    • 2012
  • Support vector machines (SVMs) are well known for their pattern recognition capability, but proper care should be taken to alleviate their inherent implementation cost resulting from high computational intensity and memory requirement, especially in embedded systems where only limited resources are available. Since the memory requirement determined by the dimensionality and the number of support vectors is generally too high for a cache in embedded systems to accomodate, frequent accesses to the main memory occur inevitably whenever the cache is not able to provide requested data to the processor. These frequent accesses to the main memory result in overall performance degradation and increased energy consumption because a memory access typically takes longer and consumes more energy than a cache access or a register access. In this paper, we propose a technique that reduces the number of main memory accesses by optimizing the data access pattern of the SVM-based classifier in such a way that the temporal locality of the accesses increases, fully utilizing data loaded into the processor chip. With experiments, we confirm the enhancement made by the proposed technique in terms of the number of memory accesses, overall execution time, and energy consumption.

Optimal Hyper Analytic Wavelet Transform for Glaucoma Detection in Fundal Retinal Images

  • Raja, C.;Gangatharan, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1899-1909
    • /
    • 2015
  • Glaucoma is one of the most common causes of blindness which is caused by increase of fluid pressure in the eye which damages the optic nerve and eventually causing vision loss. An automated technique to diagnose glaucoma disease can reduce the physicians’ effort in screening of Glaucoma in a person through the fundal retinal images. In this paper, optimal hyper analytic wavelet transform for Glaucoma detection technique from fundal retinal images is proposed. The optimal coefficients for transformation process are found out using the hybrid GSO-Cuckoo search algorithm. This technique consists of pre-processing module, optimal transformation module, feature extraction module and classification module. The implementation is carried out with MATLAB and the evaluation metrics employed are accuracy, sensitivity and specificity. Comparative analysis is carried out by comparing the hybrid GSO with the conventional GSO. The results reported in our paper show that the proposed technique has performed well and has achieved good evaluation metric values. Two 10- fold cross validated test runs are performed, yielding an average fitness of 91.13% and 96.2% accuracy with CGD-BPN (Conjugate Gradient Descent- Back Propagation Network) and Support Vector Machines (SVM) respectively. The techniques also gives high sensitivity and specificity values. The attained high evaluation metric values show the efficiency of detecting Glaucoma by the proposed technique.

Intrusion Detection Using Log Server and Support Vector Machines

  • Donghai Guan;Donggyu Yeo;Lee, Juwan;Dukwhan Oh
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.682-684
    • /
    • 2003
  • With the explosive rapid expansion of computer using during the past few years, security has become a crucial issue for modem computer systems. Today, there are many intrusion detection systems (IDS) on the Internet. A variety of intrusion detection techniques and tools exist in the computer security community such as enterprise security management system (ESM) and system integrity checking tools. However, there is a potential problem involved with intrusion detection systems that are installed locally on the machines to be monitored. If the system being monitored is compromised, it is quite likely that the intruder will after the system logs and the intrusion logs while the intrusion remains undetected. In this project KIT-I, we adopt remote logging server (RLS) mechanism, which is used to backup the log files to the server. Taking into account security, we make use of the function of SSL of Java and certificate authority (CA) based key management. Furthermore, Support Vector Machine (SVM) is applied in our project to detect the intrusion activities.

  • PDF

Development of Classification Model for hERG Ion Channel Inhibitors Using SVM Method (SVM 방법을 이용한 hERG 이온 채널 저해제 예측모델 개발)

  • Gang, Sin-Moon;Kim, Han-Jo;Oh, Won-Seok;Kim, Sun-Young;No, Kyoung-Tai;Nam, Ky-Youb
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.653-662
    • /
    • 2009
  • Developing effective tools for predicting absorption, distribution, metabolism, excretion properties and toxicity (ADME/T) of new chemical entities in the early stage of drug design is one of the most important tasks in drug discovery and development today. As one of these attempts, support vector machines (SVM) has recently been exploited for the prediction of ADME/T related properties. However, two problems in SVM modeling, i.e. feature selection and parameters setting, are still far from solved. The two problems have been shown to be crucial to the efficiency and accuracy of SVM classification. In particular, the feature selection and optimal SVM parameters setting influence each other, which indicates that they should be dealt with simultaneously. In this account, we present an integrated practical solution, in which genetic-based algorithm (GA) is used for feature selection and grid search (GS) method for parameters optimization. hERG ion-channel inhibitor classification models of ADME/T related properties has been built for assessing and testing the proposed GA-GS-SVM. We generated 6 different models that are 3 different single models and 3 different ensemble models using training set - 1891 compounds and validated with external test set - 175 compounds. We compared single model with ensemble model to solve data imbalance problems. It was able to improve accuracy of prediction to use ensemble model.

Robust Sign Recognition System at Subway Stations Using Verification Knowledge

  • Lee, Dongjin;Yoon, Hosub;Chung, Myung-Ae;Kim, Jaehong
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.696-703
    • /
    • 2014
  • In this paper, we present a walking guidance system for the visually impaired for use at subway stations. This system, which is based on environmental knowledge, automatically detects and recognizes both exit numbers and arrow signs from natural outdoor scenes. The visually impaired can, therefore, utilize the system to find their own way (for example, using exit numbers and the directions provided) through a subway station. The proposed walking guidance system consists mainly of three stages: (a) sign detection using the MCT-based AdaBoost technique, (b) sign recognition using support vector machines and hidden Markov models, and (c) three verification techniques to discriminate between signs and non-signs. The experimental results indicate that our sign recognition system has a high performance with a detection rate of 98%, a recognition rate of 99.5%, and a false-positive error rate of 0.152.