• Title/Summary/Keyword: support vector machines (SVM)

Search Result 286, Processing Time 0.027 seconds

Face image classification by SVM

  • Park, Hye-Jeong;Sim, Ju-Yong;Kim, Mun-Tae;O, Gwang-Sik;Kim, Dae-Hak
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.155-159
    • /
    • 2003
  • 최근 들어 SVM(support vector machines)은 기계학습의 분야에서 많은 응용이 이루어지고 있으며 특히 분류(classification)나 회귀(regression)분석의 영역에서 많은 연구가 진행중이다. 본 논문에서는 SVM을 이용하여 입력영상자료(image data)를 분류하고자 한다. RGB 컬러 영상자료가 입력되면 이미지 크기에 관계없이 이미지 자체를 입력패턴으로 인식하고 SVM을 통한 훈련(training)을 거친 결과(weight 들과 bias 추정치)를 이용하여 입력영상자료가 사람인가를 분류할 수 있는 문제를 다룬다. 제안된 방법의 타당성은 152개의 영상자료에 적용하여 분석되었다.

  • PDF

The Optimal Hydrologic Forecasting System for Abnormal Storm due to Climate Change in the River Basin (하천유역에서 기후변화에 따른 이상호우시의 최적 수문예측시스템)

  • Kim, Seong-Won;Kim, Hyeong-Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2193-2196
    • /
    • 2008
  • In this study, the new methodology such as support vector machines neural networks model (SVM-NNM) using the statistical learning theory is introduced to forecast flood stage in Nakdong river, Republic of Korea. The SVM-NNM in hydrologic time series forecasting is relatively new, and it is more problematic in comparison with classification. And, the multilayer perceptron neural networks model (MLP-NNM) is introduced as the reference neural networks model to compare the performance of SVM-NNM. And, for the performances of the neural networks models, they are composed of training, cross validation, and testing data, respectively. From this research, we evaluate the impact of the SVM-NNM and the MLP-NNM for the forecasting of the hydrologic time series in Nakdong river. Furthermore, we can suggest the new methodology to forecast the flood stage and construct the optimal forecasting system in Nakdong river, Republic of Korea.

  • PDF

Age of Face Classification based on Gabor Feature and Fuzzy Support Vector Machines (Gabor 특징과 FSVM 기반의 연령별 얼굴 분류)

  • Lee, Hyun-Jik;Kim, Yoon-Ho;Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.151-157
    • /
    • 2012
  • Recently, owing to the technology advances in computer science and image processing, age of face classification have become prevalent topics. It is difficult to estimate age of facial shape with statistical figures because facial shape of the person should change due to not only biological gene but also personal habits. In this paper, we proposed a robust age of face classification method by using Gabor feature and fuzzy support vector machine(SVM). Gabor wavelet function is used for extracting facial feature vector and in order to solve the intrinsic age ambiguity problem, a fuzzy support vector machine(FSVM) is introduced. By utilizing the FSVM age membership functions is defined. Some experiments have conducted to testify the proposed approach and experimental results showed that the proposed method can achieve better age of face classification precision.

A Splog Detection System Using Support Vector Systems (지지벡터기계를 이용한 스팸 블로그(Splog) 판별 시스템)

  • Lee, Song-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.163-168
    • /
    • 2011
  • Blogs are an easy way to publish information, engage in discussions, and form communities on the Internet. Recently, there are several varieties of spam blog whose purpose is to host ads or raise the PageRank of target sites. Our purpose is to develope the system which detects these spam blogs (splogs) automatically among blogs on Web environment. After removing HTML of blogs, they are tagged by part of speech(POS) tagger. Words and their POS tags information is used as a feature type. Among features, we select useful features with X2 statistics and train the SVM with the selected features. Our system acquired 90.5% of F1 measure with SPLOG data set.

Using Estimated Probability from Support Vector Machines for Credit Rating in IT Industry

  • Hong, Tae-Ho;Shin, Taek-Soo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.509-515
    • /
    • 2005
  • Recently, support vector machines (SVMs) are being recognized as competitive tools as compared with other data mining techniques for solving pattern recognition or classification decision problems. Furthermore, many researches, in particular, have proved it more powerful than traditional artificial neural networks (ANNs)(Amendolia et al., 2003; Huang et al., 2004, Huang et al., 2005; Tay and Cao, 2001; Min and Lee, 2005; Shin et al, 2005; Kim, 2003). The classification decision, such as a binary or multi-class decision problem, used by any classifier, i.e. data mining techniques is cost-sensitive. Therefore, it is necessary to convert the output of the classifier into well-calibrated posterior probabilities. However, SVMs basically do not provide such probabilities. So it required to use any method to create probabilities (Platt, 1999; Drish, 2001). This study applies a method to estimate the probability of outputs of SVM to bankruptcy prediction and then suggests credit scoring methods using the estimated probability for bank's loan decision making.

  • PDF

Credit Risk Evaluations of Online Retail Enterprises Using Support Vector Machines Ensemble: An Empirical Study from China

  • LI, Xin;XIA, Han
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.8
    • /
    • pp.89-97
    • /
    • 2022
  • The e-commerce market faces significant credit risks due to the complexity of the industry and information asymmetries. Therefore, credit risk has started to stymie the growth of e-commerce. However, there is no reliable system for evaluating the creditworthiness of e-commerce companies. Therefore, this paper constructs a credit risk evaluation index system that comprehensively considers the online and offline behavior of online retail enterprises, including 15 indicators that reflect online credit risk and 15 indicators that reflect offline credit risk. This paper establishes an integration method based on a fuzzy integral support vector machine, which takes the factor analysis results of the credit risk evaluation index system of online retail enterprises as the input and the credit risk evaluation results of online retail enterprises as the output. The classification results of each sub-classifier and the importance of each sub-classifier decision to the final decision have been taken into account in this method. Select the sample data of 1500 online retail loan customers from a bank to test the model. The empirical results demonstrate that the proposed method outperforms a single SVM and traditional SVMs aggregation technique via majority voting in terms of classification accuracy, which provides a basis for banks to establish a reliable evaluation system.

Effective Face Detection Using Principle Component Analysis and Support Vector Machine (주성분 분석과 서포트 백터 머신을 이용한 효과적인 얼굴 검출 시스템)

  • Kang, Byoung-Doo;Kwon, Oh-Hwa;Seong, Chi-Young;Jeon, Jae-Deok;Eom, Jae-Sung;Kim, Jong-Ho;Lee, Jae-Won;Kim, Sang-Kyoon
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.11
    • /
    • pp.1435-1444
    • /
    • 2006
  • We present an effective and real-time face detection method based on Principal Component Analysis(PCA) and Support Vector Machines(SVMs). We extract simple Haar-like features from training images that consist of face and non-face images, reinterpret the features with PCA, and select useful ones from the large number of extracted features. With the selected features, we construct a face detector using an SVM appropriate for binary classification. The face detector is not affected by the size of a training data set in a significant way, so that it showed 90.1 % detection rates with a small quantity of training data. it can process 8 frames per second for $320{\times}240$ pixel images. This is an acceptable processing time for a real-time system.

  • PDF

Noise-Robust Anomaly Detection of Railway Point Machine using Modulation Technique (모듈레이션 기법을 이용한 잡음에 강인한 선로 전환기의 이상 상황 탐지)

  • Lee, Jonguk;Kim, A-Yong;Park, Daihee;Chung, Yongwha
    • Smart Media Journal
    • /
    • v.6 no.4
    • /
    • pp.9-16
    • /
    • 2017
  • The railway point machine is an especially important component that changes the traveling direction of a train. Failure of the point machine may cause a serious railway accident. Therefore, early detection of failures is important for the management of railway condition monitoring systems. In this paper, we propose a noise-robust anomaly detection method in railway condition monitoring systems using sound data. First, we extract feature vectors from the spectrogram image of sound signals and convert it into modulation feature to ensure robust performance, and lastly, use the support vector machine (SVM) as an early anomaly detector of railway point machines. By the experimental results, we confirmed that the proposed method could detect the anomaly conditions of railway point machines with acceptable accuracy even under noisy conditions.

Fingerprint Classification Using SVM Combination Models based on Multiple Decision Templates (다중결정템플릿기반 SVM결합모델을 통한 지문분류)

  • Min Jun-Ki;Hong Jin-Hyuk;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.751-753
    • /
    • 2005
  • 지문을 5가지 클래스로 나누는 헨리시스템을 기반으로 신경망이나 SVM(Support Vector Machines) 등과 같은 다양한 패턴분류 기법들이 지문분류에 많이 사용되고 있다. 특히 최근에는 높은 분류 성능을 보이는 SVM 분류기의 결합을 이용한 연구가 활발히 진행되고 있다. 지문은 클래스 구분이 모호한 영상이 많아서 단일결합모델로는 분류에 한계가 있다. 이를 위해 본 논문에서는 새로운 분류기 결합모델인 다중결정템플릿(Multiple Decision Templates, MuDTs)을 제안한다. 이 방법은 하나의 지문클래스로부터 서로 다른 특성을 갖는 클러스터들을 추출하여 각 클러스터에 적합한 결합모델을 생성한다. NIST-database4 데이터로부터 추출한 핑거코드에 대해 실험한 결과. 5클래스와 4클래스 분류문제에 대하여 각각 $90.4\%$$94.9\%$의 분류성능(거부율 $1.8\%$)을 획득하였다.

  • PDF

Pan Evaporation Analysis using Nonlinear Disaggregation Model (비선형 분리모형에 의한 증발접시 증발량의 해석)

  • Kim, Seong-Won;Kim, Jeong-Heon;Park, Gi-Beom
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1147-1150
    • /
    • 2008
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of the support vector machines neural networks model (SVM-NNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The SVM-NNM in time series modeling is relatively new and it is more problematic in comparison with classifications. In this study, The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training, cross validation, and testing data, respectively. From this research, we evaluate the impact of the SVM-NNM and the MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE data from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF