Journal of the Korean Data and Information Science Society
/
v.25
no.5
/
pp.1079-1094
/
2014
In this paper, we study efficient gene selection methods by using conditional mutual information. We suggest gene selection methods using conditional mutual information based on semiparametric methods utilizing multivariate normal distribution and Edgeworth approximation. We compare our suggested methods with other methods such as mutual information filter, SVM-RFE, Cai et al. (2009)'s gene selection (MIGS-original) in SVM classification. By these experiments, we show that gene selection methods using conditional mutual information based on semiparametric methods have better performance than mutual information filter. Furthermore, we show that they take far less computing time than Cai et al. (2009)'s gene selection but have similar performance.
In this paper, we propose a license plate locating algorithm by using SVM. Tipically, the features regarding license plate format include height-to-width ratio, color, and spatial frequency. The method is dived into three steps which are image acquisition, detecting license plate candidate regions, verifying the license plate accurately. In the course of detecting license plate candidate regions, color filtering and edge detecting are performed to detect candidate regions, and then verify candidate region using Support Vector Machines(SVM) with DCT coefficients of candidates. It is possible to perform reliable license plate location bemuse we can protect false detection through these verification process. We validate our approach with experimental results.
Journal of the Korea Institute of Information and Communication Engineering
/
v.11
no.6
/
pp.1129-1135
/
2007
Human face detection technique plays an important role in computer vision area. It has lots of applications such as face recognition, video surveillance, human computer interface, face image database management, and querying image databases. In this paper, a fast face detection approach using Principal Component Analysis (PCA) and Support Vector Machines (SVM) is proposed based on the previous study on face detection technique. In the proposed detection system, firstly it filter the face potential area using statistical feature which is generated by analyzing the local histogram distribution the detection process is speeded up by eliminating most of the non-face area in this step. In the next step, PCA feature vectors are generated, and then detect whether there are faces present in the test image using SVM classifier. Finally, store the detection results and output the results on the test image. The test images in this paper are from CMU face database. The face and non-face samples are selected from the MIT data set. The experimental results indicate the proposed method has good performance for face detection.
Journal of the Korea Society of Computer and Information
/
v.24
no.11
/
pp.51-59
/
2019
Due to the exponential growth of access information on the web, the need for predicting web users' next access has increased. Various models such as markov models, deep neural networks, support vector machines, and fuzzy inference models were proposed to handle web access prediction. For deep learning based on neural network models, training time on large-scale web usage data is very huge. To address this problem, deep neural network models are trained on cluster of computers in parallel. In this paper, we investigated impact of several important spark parameters related to data partitions, shuffling, compression, and locality (basic spark parameters) for training Multi-Layer Perceptron model on Spark standalone cluster. Then based on the investigation, we tuned basic spark parameters for training Multi-Layer Perceptron model and used it for tuning Spark when training Multi-Layer Perceptron model for web access prediction. Through experiments, we showed the accuracy of web access prediction based on our proposed web access prediction model. In addition, we also showed performance improvement in training time based on our spark basic parameters tuning for training Multi-Layer Perceptron model over default spark parameters configuration.
This study aims to identify good borrowers within the context of P2P lending. P2P lending is a growing platform that allows individuals to lend and borrow money from each other. Inherent in any loans is credit risk of borrowers and needs to be considered before any lending. Specifically in the context of P2P lending, traditional models fall short and thus this study aimed to rectify this as well as explore the problem of class imbalances seen within credit risk data sets. This study implemented an over-sampling technique known as Synthetic Minority Over-sampling Technique (SMOTE). To test our approach, we implemented five benchmarking classifiers such as support vector machines, logistic regression, k-nearest neighbor, random forest, and deep neural network. The data sample used was retrieved from the publicly available LendingClub dataset. The proposed SMOTE revealed significantly improved results in comparison with the benchmarking classifiers. These results should help actors engaged within P2P lending to make better informed decisions when selecting potential borrowers eliminating the higher risks present in P2P lending.
In this study, we try to detect anomalies on the network intrusion detection system by learning only one class. We use KDD CUP 1999 dataset, an intrusion detection dataset, which is used to evaluate classification performance. One class classification is one of unsupervised learning methods that classifies attack class by learning only normal class. When using unsupervised learning, it difficult to achieve relatively high classification efficiency because it does not use negative instances for learning. However, unsupervised learning has the advantage for classifying unlabeled data. In this study, we use one class classifiers based on support vector machines and density estimation to detect new unknown attacks. The test using the classifier based on density estimation has shown relatively better performance and has a detection rate of about 96% while maintaining a low FPR for the new attacks.
Journal of the Korea Institute of Information and Communication Engineering
/
v.23
no.8
/
pp.903-909
/
2019
Periodontal disease is observed in many adult persons. However we has not clear know the molecular mechanism and how to treat the disease at the molecular levels. Here, we investigated the molecular differences between periodontal disease and normal controls using gene expression data. In particular, we checked whether the periodontal disease and normal tissues would be classified by machine learning algorithms using gene expression data. Moreover, we revealed the differentially expression genes and their function. As a result, we revealed that the periodontal disease and normal control samples were clearly clustered. In addition, by applying several classification algorithms, such as decision trees, random forests, support vector machines, the two samples were classified well with high accuracy, sensitivity and specificity, even though the dataset was imbalanced. Finally, we found that the genes which were related to inflammation and immune response, were usually have distinct patterns between the two classes.
The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.
Usually, text data consists of many variables, and some of them are closely correlated. Such multi-collinearity often results in inefficient or inaccurate statistical analysis. For supervised learning, one can select features by examining the relationship between target variables and explanatory variables. On the other hand, for unsupervised learning, since target variables are absent, one cannot use such a feature selection procedure as in supervised learning. In this study, we propose a word selection procedure that employs topic models to find latent topics. We substitute topics for the target variables and select terms which show high relevance for each topic. Applying the procedure to real data, we found that the proposed word selection procedure can give clear topic interpretation by removing high-frequency words prevalent in various topics. In addition, we observed that, by applying the selected variables to the classifiers such as naïve Bayes classifiers and support vector machines, the proposed feature selection procedure gives results comparable to those obtained by using class label information.
International Journal of Computer Science & Network Security
/
v.23
no.1
/
pp.46-52
/
2023
With billions of IoT (Internet of Things) devices populating various emerging applications across the world, detecting anomalies on these devices has become incredibly important. Advanced Intrusion Detection Systems (IDS) are trained to detect abnormal network traffic, and Machine Learning (ML) algorithms are used to create detection models. In this paper, the NSL-KDD dataset was adopted to comparatively study the performance and efficiency of IoT anomaly detection models. The dataset was developed for various research purposes and is especially useful for anomaly detection. This data was used with typical machine learning algorithms including eXtreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), and Deep Convolutional Neural Networks (DCNN) to identify and classify any anomalies present within the IoT applications. Our research results show that the XGBoost algorithm outperformed both the SVM and DCNN algorithms achieving the highest accuracy. In our research, each algorithm was assessed based on accuracy, precision, recall, and F1 score. Furthermore, we obtained interesting results on the execution time taken for each algorithm when running the anomaly detection. Precisely, the XGBoost algorithm was 425.53% faster when compared to the SVM algorithm and 2,075.49% faster than the DCNN algorithm. According to our experimental testing, XGBoost is the most accurate and efficient method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.