• 제목/요약/키워드: support vector machines

검색결과 435건 처리시간 0.024초

A Comprehensive Approach for Tamil Handwritten Character Recognition with Feature Selection and Ensemble Learning

  • Manoj K;Iyapparaja M
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권6호
    • /
    • pp.1540-1561
    • /
    • 2024
  • This research proposes a novel approach for Tamil Handwritten Character Recognition (THCR) that combines feature selection and ensemble learning techniques. The Tamil script is complex and highly variable, requiring a robust and accurate recognition system. Feature selection is used to reduce dimensionality while preserving discriminative features, improving classification performance and reducing computational complexity. Several feature selection methods are compared, and individual classifiers (support vector machines, neural networks, and decision trees) are evaluated through extensive experiments. Ensemble learning techniques such as bagging, and boosting are employed to leverage the strengths of multiple classifiers and enhance recognition accuracy. The proposed approach is evaluated on the HP Labs Dataset, achieving an impressive 95.56% accuracy using an ensemble learning framework based on support vector machines. The dataset consists of 82,928 samples with 247 distinct classes, contributed by 500 participants from Tamil Nadu. It includes 40,000 characters with 500 user variations. The results surpass or rival existing methods, demonstrating the effectiveness of the approach. The research also offers insights for developing advanced recognition systems for other complex scripts. Future investigations could explore the integration of deep learning techniques and the extension of the proposed approach to other Indic scripts and languages, advancing the field of handwritten character recognition.

모듈레이션 기법을 이용한 잡음에 강인한 선로 전환기의 이상 상황 탐지 (Noise-Robust Anomaly Detection of Railway Point Machine using Modulation Technique)

  • 이종욱;김아용;박대희;정용화
    • 스마트미디어저널
    • /
    • 제6권4호
    • /
    • pp.9-16
    • /
    • 2017
  • 열차의 방향을 기존 방향에서 다른 방향으로 이동시키기 위한 변환 장치인 선로 전환기의 고장은 열차의 탈선 등을 유발시킬 수 있다. 따라서 열차운행의 안전 측면에서 해당 장비에 대한 모니터링은 필수 요소이다. 본 논문에서는 선로 전환기의 구동시 발생하는 소리 정보를 기반으로 잡음에도 강인한 선로 전환기의 이상 상황 탐지시스템을 제안한다. 먼저 제안한 시스템은 소리 센서에서 실시간으로 취득하는 소리 신호에 STFT(Short-Time Fourier Transform)를 적용하여 스펙트로그램을 취득한다. 실제 환경에서 발생하는 잡음의 영향에도 강인한 성능을 보장하기 위하여, 해당 스펙트로그램에 대한 전처리 과정을 수행 후 모듈화 한다. 각각의 모듈에서 평균값과 표준편차를 계산 및 조합하여 특징 벡터로 생성한 후 이진 분류에 뛰어난 성능이 확인된 SVM(Support Vector Machine)에 적용하여 이상 상황을 탐지한다. 실제 선로 전환기의 전환 시 발생하는 소리 데이터를 이용하여 모의실험을 수행한 결과, 제안한 시스템은 잡음이 발생하는 상황에서도 효과적으로 이상 상황을 탐지함을 확인하였다.

지능형 음악분수 시스템을 위한 환경 및 분위기에 최적화된 음악분류에 관한 연구 (Study of Music Classification Optimized Environment and Atmosphere for Intelligent Musical Fountain System)

  • 박준형;박승민;이영환;고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.218-223
    • /
    • 2011
  • 최근 음악을 장르로 분류하는 다양한 연구가 진행되고 있다. 하지만 이러한 분류는 전문가들 마다 분류하는 기준이 서로 상이하여 정확한 결과를 도출하기가 쉽지 않다. 또한 새로운 장르 출현 시, 새롭게 정의해야하는 번거로움이 발생한다. 따라서 음악을 장르로 구분하기 보다는 감정형용사들로 분류, 검색하여야 한다. 선행연구에서는 밝고 어두움을 기준으로 음악을 분류 하였다. 본 논문에서는 선행연구를 포함하여 사람이 느끼는 감정 중, 격렬함과 잔잔함, 그리고 웅장함과 가벼움 등, 3가지 분류 기준을 가지고 분위기에 알맞은 검색을 위한 감정 형용사 기반의 음악 분류 시스템을 제안한다. 분류 알고리즘으로는 Support Vector Machine을 개선한 알고리즘인 Variance Considered Machines을 이용하였으며, 총 525개의 곡을 분류 시도한 결과, 약 85%의 분류 정확도를 나타내었다.

Support Vector Machine을 이용한 고객구매예측모형 (Purchase Prediction Model using the Support Vector Machine)

  • 안현철;한인구;김경재
    • 지능정보연구
    • /
    • 제11권3호
    • /
    • pp.69-81
    • /
    • 2005
  • 고객관계관리는 치열한 경쟁환경에서 각 기업이 생존하기 위해 반드시 필요한 하나의 기업전략이 되었다. 고객관계관리의 방법은 다양하지만 가장 기본적인 방법은 특정 고객이 어떤 상품 혹은 상품군을 구매할 것인지를 정확히 예측하는 것이다. 이미 국내외 실무현장에서 전통적인 데이터마이닝 기법을 활용한 고객구매예측모형이 널리 적용되고 있다. 하지만 전통적인 기법의 경우, 정확도가 상대적으로 떨어지거나 혹은 모형의 구축 및 유지관리가 어렵다는 문제가 종종 제기되어 왔다. 이에 본 연구에서는 기존 모형의 문제점을 개선하기 위한 대안으로, 매우 높은 예측력을 나타내면서 동시에 일반화 능력이 우수한 것으로 알려진 Support Vector Machine(SVM)을 이용하여 고객구매예측모형을 구축하고자 한다. 본 연구에서는 고객구매예측의 도구로써 SVM의 적합성을 판단하기 위하여 전통적인 기법인 로지스틱 회귀분석, 인공신경망과 그 성과를 비교하였다. 그 결과, SVM이 다른 기법들에 비해 상대적으로 우수한 성과를 나타냄을 확인할 수 있었다.

  • PDF

Support Vector Machine을 이용한 흙막이공법 선정모델에 관한 연구 (A Study on the Selection Model of Retaining Wall Methods Using Support Vector Machines)

  • 김재엽;박우열
    • 한국건설관리학회논문집
    • /
    • 제7권2호
    • /
    • pp.118-126
    • /
    • 2006
  • 건축공사가 대형화됨에 따라 대규모 지하공간을 구축하기 위한 흙막이 공사의 중요성도 점차 커지고 있다. 따라서 적정한 흙막이공법의 선정은 건축공사의 원활한 수행을 위해서 매우 중요한 요소 중의 하나라 할 수 있다. 그러나 흙막이공법의 설계와 시공이 분리되어 있는 우리나라의 경우에는 많은 설계변경이 발생하고 있고, 이러한 설계변경은 건설사업의 성패를 좌우하는 공사비와 공기 측면에서 지대한 영향을 줄 수 있다. 본 연구에서는 이러한 흙막이공법에 대한 의사결정 단계에서 활용할 수 있는 Support Vector Machine(SVM)을 활용한 흙막이공법 선정모델을 구축하여 제안하였다. SVM은 기본적으로 이원분류를 위한 분류기이기 때문에 이원분류기를 조합한 형태의 다원분류기로 확장하여 모델을 구축하였다. 구축한 SVM 모델을 실제사례에 적용한 결과 비교적 정확한 결과를 도출하는 것으로 나타났으며, 따라서 본 연구에서 제시한 SVM 흙막이공법 선정모델은 흙막이공법 선정의 의사결정과정에 유용하게 활용될 수 있을 것으로 사료된다.

가우시안 프로세스 기반 함수근사와 서포트 벡터 학습을 이용한 레이더 및 강우계 관측 데이터의 융합 (Combining Radar and Rain Gauge Observations Utilizing Gaussian-Process-Based Regression and Support Vector Learning)

  • 유철상;박주영
    • 한국지능시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.297-305
    • /
    • 2008
  • 최근들어, 커널 기법(kernel method)은 패턴 분류, 함수 근사 및 비정상 상태 탐지 등의 분야에서 상당한 관심을 끌고 있다. 특히, 서포트 벡터 머신(support vector machine)이나 커널 주성분 분석(kernel principal component analysis) 등의 방법론에서 커널의 역할은 매우 중요한데, 이는 고전적인 선형 머신이 비선형성을 효과적으로 다룰 수 있도록 일반화 해줄 수 있기 때문이다. 본 논문에서는 커널 기반 가우시안 프로세스(gaussian process) 함수근사 기법과 서포트 벡터 학습을 이용하여 레이더와 강우계의 관측 데이터를 융합하는 문제를 고려한다. 그리고, 국내의 강원, 경북 및 충북에 걸쳐있는 지역에 대한 레이더 자료 및 강우계 자료를 대상으로 하여 본 논문에서 고려하는 방법론들에 의해 데이터 융합을 수행한 결과를 제시하고, 성능비교를 수행한다.

Fault Diagnosis of Low Speed Bearing Using Support Vector Machine

  • Widodo, Achmad;Son, Jong-Duk;Yang, Bo-Suk;Gu, Dong-Sik;Choi, Byeong-Keun;Kim, Yong-Han;Tan, Andy C.C;Mathew, Joseph
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.891-894
    • /
    • 2007
  • This study presents fault diagnosis of low speed bearing using support vector machine (SVM). The data used in the experiment was acquired using acoustic emission (AE) sensor and accelerometer. The aim of this study is to compare the performance of fault diagnosis based on AE signal and vibration signal with same load and speed. A low speed test rig was developed to simulate various defects with shaft speeds as low as 10 rpm under several loading conditions. In this study, component analysis was also performed to extract the feature and reduce the dimensionality of original data feature. Moreover, the classification for fault diagnosis was also conducted using original data feature without feature extraction. The result shows that extracted feature from AE sensor gave better performance in faults classification.

  • PDF

한국어 트위터의 감정 분류를 위한 기계학습의 실증적 비교 (An Empirical Comparison of Machine Learning Models for Classifying Emotions in Korean Twitter)

  • 임좌상;김진만
    • 한국멀티미디어학회논문지
    • /
    • 제17권2호
    • /
    • pp.232-239
    • /
    • 2014
  • 온라인에서의 글쓰기가 늘어나면서, 기계학습을 통해 이를 분류하는 연구가 늘고 있다. 그럼에도 불구하고 한국어로 작성된 마이크로블로그를 대상으로 한 연구는 많지 않다. 또한 통계적으로 기계학습을 평가한 연구를 찾아보기 힘들다. 본 논문에서는 트위터를 대상으로, 표본을 추출하고, 형태소와 음절을 자질로 사용하여 기계학습에 따라 감정을 분류하였다. 그 결과 약 76%정도 트위터에 포함된 감정이 분류되었다. Support Vector Machine이 Na$\ddot{i}$ve Bayes보다 정확했고, 선형모델도 비구조적인 텍스트 처리에 비선형모델에 상응하는 정확성을 보였다. 또한 형태소가 음절 자질에 비해 높은 정확성을 보이지 않았다.

최소제곱 서포터벡터기계 형태의 준지도분류 (Semi-supervised classification with LS-SVM formulation)

  • 석경하
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권3호
    • /
    • pp.461-470
    • /
    • 2010
  • 라벨 있는 자료가 분류규칙을 만들 만큼 충분하지 않거나, 라벨 없는 자료가 분류규칙을 만드는데 도움을 줄 수 있는 경우에는 라벨 있는 자료와 라벨 없는 자료를 모두 사용하는 준지도분류가 더 효과적이다. 준지도분류 중 그래프기반 다양체정칙법이 개발되어 최근에 많은 연구가 이루어지고 있다. 본 연구에서는 통계적학습에서 좋은 성능을 보이는 최소제곱 서포터벡터기계를 준지도분류에 적용시키는 방법을 제안한다. 모의실험을 통해 제안된 방법이 라벨 없는 자료를 잘 활용하는 것을 볼 수 있었다.

SVM을 이용한 버터플라이 밸브의 캐비테이션 상태감시 (Cavitation Condition Monitoring of Butterfly Valve Using Support Vector Machine)

  • 황원우;고명환;양보석
    • 한국소음진동공학회논문집
    • /
    • 제14권2호
    • /
    • pp.119-127
    • /
    • 2004
  • Butterfly valves are popularly used in service in the industrial and water works pipeline systems with large diameter because of its lightweight, simple structure and the rapidity of its manipulation. Sometimes cavitation can occur. resulting in noise, vibration and rapid deterioration of the valve trim, and do not allow further operation. Thus, the monitoring of cavitation is of economic interest and is very importance in industry. This paper proposes a condition monitoring scheme using statistical feature evaluation and support vector machine (SVM) to detect the cavitation conditions of butterfly valve which used as a flow control valve at the pumping stations. The stationary features of vibration signals are extracted from statistical moments. The SVMs are trained, and then classify normal and cavitation conditions of control valves. The SVMs with the reorganized feature vectors can distinguish the class of the untrained and untested data. The classification validity of this method is examined by various signals that are acquired from butterfly valves in the pumping stations and compared the classification success rate with those of self-organizing feature map neural network.