• 제목/요약/키워드: support vector machines

검색결과 435건 처리시간 0.025초

An Application of Support Vector Machines for Fault Diagnosis

  • Hai Pham Minh;Phuong Tu Minh
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.371-375
    • /
    • 2004
  • Fault diagnosis is one of the most studied problems in process engineering. Recently, great research interest has been devoted to approaches that use classification methods to detect faults. This paper presents an application of a newly developed classification method - support vector machines - for fault diagnosis in an industrial case. A real set of operation data of a motor pump was used to train and test the support vector machines. The experiment results show that the support vector machines give higher correct detection rate of faults in comparison to rule-based diagnostics. In addition, the studied method can work with fewer training instances, what is important for online diagnostics.

  • PDF

Support Vector Machine을 이용한 지능형 신용평가시스템 개발 (Development of Intelligent Credit Rating System using Support Vector Machines)

  • 김경재
    • 한국정보통신학회논문지
    • /
    • 제9권7호
    • /
    • pp.1569-1574
    • /
    • 2005
  • In this paper, I propose an intelligent credit rating system using a bankruptcy prediction model based on support vector machines (SVMs). SVMs are promising methods because they use a risk function consisting of the empirical error and a regularized term which is derived from the structural risk minimization principle. This study examines the feasibility of applying SVM in Predicting corporate bankruptcies by comparing it with other data mining techniques. In addition. this study presents architecture and prototype of intelligeht credit rating systems based on SVM models.

Support Vector Machines를 이용한 Convex 클러스터 결합 알고리즘 (A Convex Cluster Merging Algorithm using Support Vector Machines)

  • 최병인;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.267-270
    • /
    • 2002
  • 본 논문에서는 Support Vector Machines (SVM) 을 이용하여, 빠르고 정확한 두 convex한 클러스터 간의 거리 측정 방법을 제시한다 제시된 방법에서는, SVM에 의해서 생성되는 최적 다차원 평면이 두 클러스터간의 최소 거리를 계산하는데 사용된다. 또한, 본 논문에서는 이러한 두 클러스터 간의 최적의 거리를 사용하여, Fuzzy Convex Clustering (FCC) 방법 (1) 에 의해서 생성되는 Convex 클러스터들을 묶어주는 효과적인 클러스터 결합 알고리즘을 제시하였다. 그러므로, 데이터의 부적절한 표현을 유발하지 않고도 클러스터들의 개수를 좀 더 줄일 수 있었다. 제시한 방법의 타당성을 위하여 여러 실험 결과를 제시하였다

Support Vector Machines 기반의 클러스터 결합 기법 (Support Vector Machine based Cluster Merging)

  • 최병인;이정훈
    • 한국지능시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.369-374
    • /
    • 2004
  • Convex한 클러스터간의 최적의 거리와 Fuzzy Convex Clustering(FCC) 방법에 의한 효과적인 클러스터 결합 알고리즘을 제시하였다. 또한 두 convex한 클러스터간의 거리 측정 방법의 문제점인 정확성과 수행속도 개선하기 위하여 Support Vector Machines(SVM) 을 이용한 빠르고 정확한 거리 측정 방법을 제시하였다. 따라서 데이터의 부적절한 표현 없이 클러스터들의 개수를 크게 더 줄일 수 있었다. 본 논문에서는 제시한 알고리즘의 타당성을 위하여 여러 데이터에 대한 실험결과를 보여주므로서 제시한 알고리즘을 실제 영상 분할에 적용하여 다른 클러스터링 방법의 결과와 비교분석한다.

Modeling properties of self-compacting concrete: support vector machines approach

  • Siddique, Rafat;Aggarwal, Paratibha;Aggarwal, Yogesh;Gupta, S.M.
    • Computers and Concrete
    • /
    • 제5권5호
    • /
    • pp.461-473
    • /
    • 2008
  • The paper explores the potential of Support Vector Machines (SVM) approach in predicting 28-day compressive strength and slump flow of self-compacting concrete. Total of 80 data collected from the exiting literature were used in present work. To compare the performance of the technique, prediction was also done using a back propagation neural network model. For this data-set, RBF kernel worked well in comparison to polynomial kernel based support vector machines and provide a root mean square error of 4.688 (MPa) (correlation coefficient=0.942) for 28-day compressive strength prediction and a root mean square error of 7.825 cm (correlation coefficient=0.931) for slump flow. Results obtained for RMSE and correlation coefficient suggested a comparable performance by Support Vector Machine approach to neural network approach for both 28-day compressive strength and slump flow prediction.

Expected shortfall estimation using kernel machines

  • Shim, Jooyong;Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권3호
    • /
    • pp.625-636
    • /
    • 2013
  • In this paper we study four kernel machines for estimating expected shortfall, which are constructed through combinations of support vector quantile regression (SVQR), restricted SVQR (RSVQR), least squares support vector machine (LS-SVM) and support vector expectile regression (SVER). These kernel machines have obvious advantages such that they achieve nonlinear model but they do not require the explicit form of nonlinear mapping function. Moreover they need no assumption about the underlying probability distribution of errors. Through numerical studies on two artificial an two real data sets we show their effectiveness on the estimation performance at various confidence levels.

SVM의 미세조정을 통한 음성/음악 분류 성능향상 (Fine-tuning SVM for Enhancing Speech/Music Classification)

  • 임정수;송지현;장준혁
    • 대한전자공학회논문지SP
    • /
    • 제48권2호
    • /
    • pp.141-148
    • /
    • 2011
  • Support vector machine (SVM)은 패턴인식 분야에 많이 사용되어지고 있다. 한 예로서 3GPP2 selectable mode vocoder (SMV)와 같은 규격화된 코덱에 쓰여 코덱의 음성/음악 분류 성능을 향상시킬 수 있다. 본 논문에서는 SVM을 개선시켜 음성/음악의 분류성능을 향상시키는 새로운 방법을 제안한다. SVM을 학습시킬 때 적용되는 기존의 기법들과는 달리 제안되는 기법은 SVM이 패턴분류를 행할 때 사용된다. 그렇기 때문에 기존의 기법들과 독립적으로 개발되고 사용될 수 있고, 따라서 패턴분류의 성능을 한층 더 향상시킬 수 있다. 이를 위해 먼저 radial basis function의 커널 width 파라미터가 SVM의 패턴분류에 미치는 영향을 분석해 보았다. 분석한 결과, 커널 width 파라미터를 가지고 SVM의 패턴분류 성향을 미세 조정할 수 있다는 것을 알았다. 또한 음성신호의 각 프레임 간의 상관관계 (correlation)을 확인하고 이를 커널 width 파라미터조절의 길잡이로 삼았다. 실험을 통해, 제안된 기법이 SVM의 성능을 향상시킬 수 있음을 증명하였다.

지지벡터기계(Support Vector Machines)를 이용한 한국어 화행분석 (An analysis of Speech Acts for Korean Using Support Vector Machines)

  • 은종민;이성욱;서정연
    • 정보처리학회논문지B
    • /
    • 제12B권3호
    • /
    • pp.365-368
    • /
    • 2005
  • 본 연구에서는 지지 벡터 기계(Support Vector Machines)를 이용하여 한국어 대화의 화행을 분석하는 방법을 제안한다. 우리는 발화의 어휘 및 품사와 이진 품사 쌍을 문장 자질로 사용하고 이전 발화의 문맥을 문맥 발화로 사용한다. 카이 제곱 통계량을 이용해 적절한 자질을 선택하고 선택된 자질로 지지 벡터 기계를 학습하였다. 학습된 지지 벡터 기계 분류기를 이용하여 각 발화의 화행을 분석하였다. 호텔 예약 영역의 말뭉치에 대해 제안된 시스템을 이용하여 실험한 결과 약 $90.54\%$의 정확률을 얻었다.

Estimating global solar radiation using wavelet and data driven techniques

  • Kim, Sungwon;Seo, Youngmin
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.475-478
    • /
    • 2015
  • The objective of this study is to apply a hybrid model for estimating solar radiation and investigate their accuracy. A hybrid model is wavelet-based support vector machines (WSVMs). Wavelet decomposition is employed to decompose the solar radiation time series into approximation and detail components. These decomposed time series are then used as inputs of support vector machines (SVMs) modules in the WSVMs model. Results obtained indicate that WSVMs can successfully be used for the estimation of daily global solar radiation at Champaign and Springfield stations in Illinois.

  • PDF

서포트 벡터 기계에서 TOTAL MARGIN을 이용한 일반화 오차 경계의 개선 (Improving the Generalization Error Bound using Total margin in Support Vector Machines)

  • 윤민
    • 응용통계연구
    • /
    • 제17권1호
    • /
    • pp.75-88
    • /
    • 2004
  • 서포트 벡터 기계(Support Vector Machines, SVMs) 알고리즘은 표본 점들과 분리 초평면 사이의 최소 거리를 최대화하는 것에 관심을 가져왔다. 본 논문은 모든 데이터 점들과 분리 초평면 사이의 거리들을 고려하는 total margin을 제안한다. 본 논문에서 제안하는 방법은 기존의 서포트 벡터 기계 알고리즘을 확장하고, 일반화 오차 경계를 개선하게 된다. 새롭게 제안하는 total margin알고리즘이 기존 방법들과의 비교를 통하여 더욱 우수한 수행능력을 가지고 있음을 수치 예제들을 통하여 확인할 수 있다.