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Abstract:
Fault diagnosis is one of the most studied problems in process engineering. Recently, great research interest fas
been devoted to approaches that use classification methods to detect faults. This paper presents an application o1 a
newly developed classification method - support vector machines - for fault diagnosis in an industrial case. A real
set of operation data of a motor pump was used to train and test the support vector machines. The experiment resu ts
show that the support vector machines give higher correct detection rate of faults in comparison to rule-bas:d
diagnostics. In addition, the studied method can work with fewer training instances, what is important for online

diagnostics.
Keywords: support vector machines, fault diagnosis.

1. INTRODUCTION

Fault detection and diagnosis has received considerable
attention from the industry and academia because of the
economic and safety impact of this problem. Prompt
detection of faults is essential for maintaining efficiency
and quality in industrial processes. In recent years, the
increasing availability of computing environments and
the progress in problem solving paradigms have
facilitated the development and application of a wide
variety of computer-aided methods for on-line fault
diagnosis. These methods differ from each other by the
type of knowledge they are based on and how this
knowledge is used.

Fault diagnosis is the identification or localization of
the cause of fault operation. It involves determining
which of the possible causes of faulty behavior are
consistent with the observed behavior. Automated fault
diagnosis relies entirely on sensor and so may not be
able to identify the nature of the fault unambiguously,
although it may be able to eliminate some of the
possible causes. There are two basic ways to approach
the analytical fault diagnosis problem: The model-based
approach and the data-based approach [10]. In the
model-based approach, the engineer has access to a
model of the system whose behavior is being
monitored. Most application of this approach have dealt
with linear systems because they can be easily
described and studied. The data-based approach
bypasses the obtaining of a mathematical model and
deals directly with the data. This approach passes a
process called training, after that they use learned
knowledge to identify fault situations.

In the past, the model-based approach was dominant.
This approach requires explicit modeling of the process,
filtering of measured data and estimation of the state
variables. The output of the model is compared to the
measurements from the process, the generated residuals
or errors are then used for making decision about the
state of the system. Faults are detected with a
quantitative model by using measured values of the
control signals and some of the sensor signals as inputs
to the model. The remaining sensor signals are then

compared with the predictions of the model, as shovn
in Figure 1. Significant differences indicate the
presence of a fault somewhere in the part of the system
treated by the model.
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Fig. 1. The model-based fault detection scheme

In the last ten years, data-based approaches that do not
assume any form of model information have receivel
much of research interest. These include cased-basel
reasoning, rule-based systems [12], and knowledge-
based expert systems among others. Classificatio1
algorithms have been extensively researched for faut
diagnosis. There are some useful methods applied to
fault diagnosis problems, for example, artificial neural
network (ANN) [7,10,11], fuzzy logic (FL), neuro-
fuzzy (NF) [8].

Case-based reasoming is a technique for solving new/
problems by adapting solution that have been used to
solve old problems. The most similar cases must be
retrieved in the current case base. The case base is an
experience-based repository of currently known cases fo-
a focused problem domain. Thus, a case is a documented
experience, placed in the context of the domain, and i:
should comprise a description of the problem, the
solution used to solve that problem, and the outcome
describing the changes that the solution produced.

Rule-based systems are used to solve classificatior
problems. The rules, which may be Boolean or fuzzy.
can either obtained from experts and then checked for
consistency and completeness or can be generated fromr
simulation and/or real data using rule learning
algorithms.
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In this paper, we study an application of support vector
machines for fault diagnosis in an industrial case study.
The support vector machine has been chosen due to
their good performance in a number of applications. We
compare the performance of SVM and a rule-based
method in a real operation data set of a motor pump.

The rest of the paper is structured as follows: section 2
briefly reviews the SVM method, in section 3, the
application of SVM in motor pump fault diagnosis
problem is described, and in section 4, we draw our
conclusions.

2. SUPPORT VECTOR MACHINES

Support vector machine is a new machine learning
method. The SVM can be used to learn polynomial,
radial basis function (RBF) and multi-layer perceptron
(MLP) classifiers. SVM has rooted from the statistical
learning theory in the 1960s. However, since 1995, the
algorithms have used for SVM to start emerging with
greater availability of computing power, paving the way
for numerous practical applications [1,2,5].

SVM is an approximate implementation of the method
of structural risk minimization. This introduction
principle is based on the fact that the error rate of a
learning machine on test data, which is bound by the
sum of the training-error rate and a term that depends
on the Vapnik-Chervonenkis (VC) dimension. An SVM
for classification attempts to find a hyperplane that
maximizes the margin between positive and negative
examples, while minimizing training set
misclassifications. SVM are based on strong
mathematical theory, and their observed empirical
performance is extremely good. However, training an
SVM requires the solution of a quadratic program in as
many variables as there are data points in the training
set. SVM were developed to solve the classification
problem, but recently they have been extended to the
domain of regression problems.

An SVM has two distinct features. Firstly, it is often
associated to the physical meaning of the data so it is
easy to interpret (in contrast, ANN does not possess any
physical meaning). Secondly, it requires only smail
amount of training samples. In other researches, the
results also show that SVM has higher or equal success
rate than ANN [3,7].

Here we focus on SVM for two-class classification,
class I and class II. This can easily be extended to
k — class classification by constructing & two-class
classifiers. Kemel functions are then introduced in
order to construct non-linear decision surfaces.

Let n-dimensional input x; (i=/,..,M) belong to class I
or class I and associated labels be y,=/ for class 1 and
yi=—1 for class II. For linearly separable data, we can
determine a hyperplane ffx) that separates the data.
For a separating hyperplane f{x) =0, if the input x
belongs to positive class, and f{x)<0, if x belongs to
the negative class.

f(x)zw.x+b=ijxj+b (1

J=1
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yif(x;)=y,(wx; +b)=20, for i=1..M ()
where w is an n-dimensional vector and b is a scalar.
The weighting vector w defines the direction of the

separating hyperplane f{x) and b (bias) defines the
hyperplane’s distance from the origin.

a Maxyimum Margin
The Optimal Separating

Hyperplane
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O ClasslI
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-

Fig. 2. Optimal hyperplane

The separating hyperplane that has the maximum
distance between the hyperplane and the nearest data,
ie. the maximum margin, is called the optimal
separating hyperplane. The generalisation ability is
maximized with the optimal hyperplane. An example of
optimal separating hyperplane of two datasets is
presented in Figure 2. From the geometry, the optimal
hyperplane can be obtained by solving the following
convex quadratic optimisation problem:

minimize %”wﬂz 3)

supject to y,(w.x, +b) >1

If the number of attributes of data examples is large, we
can considerably simplify calculations by converting
the problem with Kuhn-Tucker conditions into the
equivalent Lagrange dual problem. Lagrange function
for (3) is:

LOnb,a) = (w0) = ot [, (0w ) +5) 1]
4)

where oL =(0,,...,0l,,) is the Lagrange multiplier.
The dual problem is:

maximize L(w,b,a) (5)
supjectto o, 20, i=1,...,.M

By differentiating (4) with respect to w and b and
imposing stationarity, we get:

iL—(wboc)--w—i o.x;, =0

PR MG - Y x;

oL i ©
= (b) = yo, =0

=]
From (4), (5) and (6) we get the dual representation of
the optimisation problem:



M 1 M
maximize W (o) = ZOC,- Py zaiakyiykxi'xk

i=1 i,k=0

M
supject to Zyl.oti =0, 0,20,i=1..M (7N

i=|

The number of variables of the dual problem is the
riumber of training data.

Let us assume that optimal solution for the dual
problem is o * andb*. According to the Karush-
Kuhn-Tucker theorem, the equality condition in (2)
holds for the training input-output pair (x;,y;) only if the
associated O, * is not 0. In this case the training
example x; is a support vector. Solving (7) for
a =(a,),..,0,,, we can obtain the support vectors
for classes I and II. Then the optimal separating
hyperplane is placed at the equal distances from the
support vectors for classes 1 and II, and b* is given by:

1 M
“EZ)’kuk (8%, +5,%,)
k=1
where sl and s2 are respectively, arbitrary support
vectors for class I and class II. In Figure 2, support
vectors are bolded. Notice, that support vectors are such
training samples that are on the margin of two datasets.
The optimal separating hyperplane would be the same,
if only support vectors had been used as training data.
So far we have assumed that the training data is linearly
separable. In the case where the training data cannot be
linearly separated, we introduce non-negative slack

variables &, to (2), and add to the objective function

given by (5), the sum of the slack variables multiplied
by the parameter C. This corresponds to adding the
upper bound C to O . In both cases, the decision
functions are the same and are given by:

M .
f(x) =Zoc,. *yx, x+b*
i=1
Then unknown data example x is classified as follows:

e{Class Iif f(x)>0

b¥ =

Class I otherwise

SVM is a non-linear kernel-based classifier, which
maps the data to be classified, X, onto a space, where
the data can be linearly classified. The space is called a
feature space, F. This is depicted in Fig.3.. . Now using
the non-linear vector function

@(x) = (D, (x),...,D,(x)) that

dimensional input vector x into the /-dimensional
feature space, the linear decision function in dual form
is given by:

S ()= 0,5, P(x,) D(x) ®)

Nctice that in (8) as well in the optimisation problem
(7), the data occur only in inner products. In SVM, the
actual mapping function, @, is not necessary to be

maps the n-

knewn, but the classes optimally separating hyperplane
is possible to calculate with inner products of the
original data samples. If it is possible to find this kind
of procedure to calculate inner products of feature space
in original data space, it is called a kernel,
K(x,z)=®(x).®(z). Then the learning in the
feature space does not require evaluating P or evzn
knowing it, because all the original samples are handlzd

only with Gram matrices G = ((x,.x ,.))Mi,_/zl . Using

a Kernel function, the decision function will be:

Zai *yl.K(x,.,x)j

sup port vector

fx)= Sign[

and the unknown data example is classified in a
following way:

Class I if f(x)=+1
*e Class II if f(x)=-1

There are a number of Kernel functions mentioned n
the literature [6,8,9]. A concrete selection depends on a
concrete problem and must be defined by experiments.

However, all kernels do not correspond inner products
in some feature space F. With a so called Mercer's
theorem it is possible to find out, whether a kernel £
depicts an inner product in that space where @ s
mapped.
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Fig. 3. Mapping @ from the data space X to the feature
space F

3. EXPERIMENTS AND RESULS

In this section, we will present an application of SVM
in fault diagnosis of a motor pump described in [4]. The
results are then compared with the results from the
original paper, which used a rule learning based
algorithm to detect faults. The motor pump was chosen
due to the popularity of such rotating apparatuses in
pratice and, more important, due to the availability o?
training data.

3.1. Preliminaries

The motor pump studied belongs to a large class o’
apparatuses that range from small motor pumps to very
large turbo. All the considered apparatuses share the
common feature of possessing a rotating shaft to whict.
various rotors are connected. If the motion has to be
transmitted between separate shafts, transmission parts
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such as rigid or elastic joints, belt drivers and gear
trains will be used. The scheme of a typical motor pump
is reported in Figure 4.

A
{ Motor

l Basement I

||

Fig. 4. Scheme of a horizontal centrifugal motor pump. The
supports of the motor are labeled A and B, those of the pump
C and D. The motor and the pump shafts are connected
through an elastic joint. Both the motor and the pump are
anchored to the ground by means of elastic support. Rolling
bearings are located inside the four supports.

When a machine possesses rotating elements, several
unavoidable vibratory motions are included in its parts,
these vibrations occur also during the correct machine
operation and are not dangerous as long as their
amplitude remains limited. When some fault occurs in
the machine, new anomalous vibrations will appear,
beside other manifestations. The aim of fault daignosis
is to locate faults through an analysis of these
vibrations. The diagnosis process basically performs a
Fourier analysis of the vibratory motions taken in
prespecified and labeled points, previsely on the
supports of the machine components. By means of a
special analyzer, the technician obtains, for each
support, the amplitude and velocity of the global
vibration along the vertical, horizontal, and axial
direction. Furthermore, the same data can be taken for
each of the harmonic components of the vibrations.

Mechanalysis has a strong mathematical foundation in
vibration theory, and hence, the relationships between
anomalous frequencies and faults could be predicted.
To keep all the electromechanical operate in the control,
the aim to solve fault diagnosis problem is necessary.
This creates a taxonomic structure in the set of
diagnoses, which must be taken into account both in
learning and in classification.

3.2. The data set

For testing SVM in fault diagnosis of the motor pump,
we have used the data set called “Mechanical analysis
data” [4]. The data were collected from a number of
sensors mounted on the motor pump. The data set has
209 instances, each with seven attibutes.

The seven attributes are:

1. class - classification (1..6, the same for
components of one example)

# - component number (integer)

3. sup - support in the machine where measure
was taken (1..4)

4. cpm - frequency of the measure (integer)

5. mis - measure (real)
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6. misr - earlier measure (real)

7. omega - rpm of the machine (integer, the same
for components of one example)

Table 1 shows the six conditions tested (6 classes), with
the 6™ is the normal operating condition.

Since SVM can classify instances into only two classes
we have combined several SVM for the six-class
classification problem as in our case. Hence, we used
five SVMs to classify all conditions. One SVM is used to
detect faults while others are use to identify the faults.
This design is necessary because SVM can deal with
only two classes and it helps to quickly detect the faults.

Table 1. Operating conditions of motor pump

Conditions Description
(Classes)

1. Problems in the joint

2. Fauity Bearings

3. Mechanical Loosening

4. Basement Distortion

5. Unbalance

6. Normal operating conditions

Then, combinations of the classes are possible with the
following groupings:

7. Shaft misalignment (includes class 1 and class 4)
8. Problems in the pump (includes classes 2, 3 and 5)
9. Problems in the motor (includes classes 2, 3 and 5)

10. Problems in the machine (includes all basic
classes except class 6)

Figure 5 shows the diagnosis of the motor pump fault.

Problems in
the Machine
(Co)
Problems in Problems in Shaft
the Pump the Motor Misalignment
(Cy) (C,) (C)
Faulty Mechanical Problems in Basement Normal
. . Unbalance . . N .
Bearings Loosening € the joint Distortion Machine
() (C) ’ [ (C) (C,)

Fig. 5. Diagnosis taxonomy of the motor pump faults. The
leaves correspond to single faults (C,+Cg). The internal nodes
(C5+Cy) correspond to more generic fault locations, whereas
the root C,, corresponds to the case in which a fault does
occur, but it is impossible to locate it.

For using SVM in pratice, choosing an appropriate
kernel function is important. The kernel function
reflected the geometric relationship between the input
vector and the support vector, or the similarities of the
features of the fault. We have tried several kernel
functions (such as polynomial, radial basis function and



sigmoid). The experiments show that the polynomial
kernel function gives the best performance both of
correct prediction rate and time to converge to SVM.

To calculate the success rate of the method, we used
popular n-fold cross validation. The data set is
randomly divided into » subsets. In each test, n-1
subsets are used to train SVM and the remain subset is
used to test the learned SVM. The success rate is then
calculated as the average of n tests, We used ten folds
in our experiments. In addition, we counted an instance
as correctly classified if and only if the instance is
classified correctly to a specific class.

In the original paper, the authors used a rule-based
system called ENIGMA for fault diagnosis. Table 2
shows the rate of correct fault detection using SVM in
comparison with the detection rate of ENIGMA as
reported in [4]. Although the success rate of 75% is
not as high as reported in some other papers, it is a
level higher than that of ENIGMA. The low success
rate can be explained by the specificities of the data
set we used.

Table 2. Testing results

SVM ENIGMA

Success

75.33
rate (%) >

70,49

4. CONCLUSION

In this paper, we have used a new classification
technique, support vector machines, for fault diagnosis
of a2 motor pump. The experiment results with a real
data set show the better perfomance of SVM in
comparison with a rule-based classification system.
These results are promising because they demonstrate
the potential of using SVM in fault detection and
diagnosis problems. In future research we intend to do
more comparative study of SVM with other
classification methods such as ANN, HMM-based.
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