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ABSTRACT

    The objective of this study is to apply a hybrid model for estimating solar radiation and 
investigate their accuracy. A hybrid model is wavelet-based support vector machines (WSVMs). Wavelet 
decomposition is employed to decompose the solar radiation time series into approximation and detail 
components. These decomposed time series are then used as inputs of support vector machines (SVMs) 
modules in the WSVMs model. Results obtained indicate that WSVMs can successfully be used for the 
estimation of daily global solar radiation at Champaign and Springfield stations in Illinois. 
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INTRODUCTION
    Solar radiation is the principal energy source for physical, biological and chemical processes, such 
as snow melt, plant photosynthesis, evaporation, crop growth and is also a variable needed for 
biophysical models to evaluate risk of forest fires, hydrological simulation models and mathematical 
models of natural processes. Solar radiation plays an important role in the design and analysis of 
energy efficient buildings in different climates. In cold and severe cold regions, passive solar designs 
and active solar systems help lower the reliance on conventional heating means using fossil fuels. In 
tropical and subtropical climates, solar heat gain is a major cooling load component, especially in 
cooling dominated buildings. The effects of prevailing climate and local topography would determine 
the actual amount of solar radiation reaching a particular location. The objective of the present study is 
to develop SVMs and WSVMs models that can be used to estimate daily solar radiation at two 
locations (Champaign and Springfield stations) in Illinois.

SUPPORT VECTOR MACHINES 
    The SVMs model has found wide applications in several areas, including pattern recognition, 
regression, multimedia, bio-informatics, and artificial intelligence. The SVMs model is a new kind of 
classifier that is motivated by two concepts. First, transformation of data into a high-dimensional space 
can transform complex problems into simpler problems that can use linear discriminant functions. 
Second, the SVMs model is motivated by the concept of training and uses only those inputs that are 
near the decision surface (Principe et al. 2000; Tripathi et al. 2006; Vapnik 2010). The solution of 
traditional neural networks models may tend to fall into a local optimal solution, whereas global 
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optimum solution is guaranteed for the SVMs model (Haykin 2009). The current study uses an ε
-support vector regression (ε-SVR) model. It has been successfully applied for modeling hydrological 
processes (Tripathi et al. 2006; Kim et al. 2012; 2013a, b). During the ε-SVR model training 
performance, the purpose is to find a nonlinear function that minimizes a regularized risk function. This 
is achieved for the least value of the desired error criterion (e.g., RMSE) for various constant 
parameters CC, and ε and various kernel functions with various constant σ values. Detailed information 
on the SVMs model can be found in Vapnik (2010), Principe et al. (2000), Tripathi et al. (2006), and 
Kim et al. (2012, 2013a, b).

WAVELET DECOMPOSITION 
    Wavelet analysis is a multi-resolution analysis in time and frequency domains. The wavelet 
transform decomposes a time series signal into different resolutions by controlling scaling and shifting. 
It provides a good localization properties in both time and frequency domains (Nejad and Nourani 
2012). It also has an advantage in that it has flexibility in choosing the mother wavelet, which is the 
transform function, according to the characteristics of time series. 
    A fast DWT algorithm, developed by Mallat (1989), is based on four filters, including decomposition 
low-pass and high-pass, reconstruction low-pass and high-pass filters. For practical implementation of 
Mallat’s algorithm, low-pass and high-pass filters are used instead of father and mother wavelets, which 
are also called scaling and wavelet functions, respectively. The low-pass filter, associated with the scaling 
function, allows the analysis of low frequency components, while the high-pass filter, associated with the 
wavelet function, allows the analysis of high frequency components. These filters, used in Mallat’s 
algorithm are determined according to the selection of mother wavelets (González-Audícana et al. 2005). 
Multiresolution analysis by Mallat’s algorithm is a procedure to obtain ‘approximations’ and ‘details’ for a 
given time series signal. An approximation holds the general trend of the original signal, while a detail 
depicts high-frequency components of it. A multilevel decomposition process (Figure 1) can be achieved, 
where the original signal is broken down into lower resolution components (Catalão et al. 2011). Detailed 
information for Mallat’s algorithm can be found in Nason (2010).

CASE STUDY
    The daily weather data obtained from two weather stations, Champaign (latitude, 40.0840° N; 
longitude, 88.2404° W; altitude, 219 m) and Springfield (latitude, 39.7273° N; longitude, 89.6106°W; 
altitude, 177 m) operated by the Illinois State Water Survey (ISWS), were used in this study 
(http://www.isws.illinois.edu/warm/).
The ISWS is a division of the Prairie Research Institute of the University of Illinois at 
Urbana-Champaign and has flourished for more than a century by anticipating and responding to new 
challenges and opportunities to serve the citizens of Illinois. The weather data consisted of six years 
(January 2007 to December 2012, N=2,192 days) of daily records of air temperature (TEM), solar 
radiation (RAD), relative humidity (HUM), dew point temperature (DEW), wind speed (WIN), and 
potential evapotranspiration (ETO). Air temperature and relative humidity have been measured at 2 m 
above the ground, whereas wind speed has been measured at 10 m above the ground (prior to winter 
2011/2012 measurement made at 9.1 m). Potential evapotranspiration has been calculated using the Food 
and Agricultural Organization (FAO) of the United Nations Penman–Monteith equation as outlined in 
FAO Irrigation and Drainage Paper No. 56 “Crop Evapotranspiration” (Allen et al. 1998) since 1 
December 2012 (Water and Atmospheric Resources Monitoring Program 2011). Prior to that time, the 
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Van Bavel method was used for calculating potential evapotranspiration (Van Bavel 1956). Figure 2 
shows the comparison of the observed and estimated daily solar radiation values using SVMs and 
WSVMs models (three input).

CONCLUSIONS 
    This study develops and evaluates data-driven models for estimating daily solar radiation at 
Champaign and Springfield stations in Illinois. The SVMs and WSVMs models are developed for the 
three input combination. Results obtained indicate that WSVMs model can successfully be used for the 
estimation of daily global solar radiation at Champaign and Springfield stations in Illinois. In this study, 
it can be found that the data-driven models can estimate daily solar radiation.
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Figure 1 Mallat’s algorithm for two-level decomposition of a signal 

     

(a) SVMs 3 (Champaign)                       (b) WSVMs 3 (Champaign) 

     

(c) SVMs 3 (Springfield)                       (d) WSVMs 3 (Springfield) 

 

Figure 2 Comparison of the observed and estimated solar radiation values using SVMs and WSVMs models 
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