• 제목/요약/키워드: support vector machine(SVM)

검색결과 1,266건 처리시간 0.037초

Optimal SVM learning method based on adaptive sparse sampling and granularity shift factor

  • Wen, Hui;Jia, Dongshun;Liu, Zhiqiang;Xu, Hang;Hao, Guangtao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권4호
    • /
    • pp.1110-1127
    • /
    • 2022
  • To improve the training efficiency and generalization performance of a support vector machine (SVM) in a large-scale set, an optimal SVM learning method based on adaptive sparse sampling and the granularity shift factor is presented. The proposed method combines sampling optimization with learner optimization. First, an adaptive sparse sampling method based on the potential function density clustering is designed to adaptively obtain sparse sampling samples, which can achieve a reduction in the training sample set and effectively approximate the spatial structure distribution of the original sample set. A granularity shift factor method is then constructed to optimize the SVM decision hyperplane, which fully considers the neighborhood information of each granularity region in the sparse sampling set. Experiments on an artificial dataset and three benchmark datasets show that the proposed method can achieve a relatively higher training efficiency, as well as ensure a good generalization performance of the learner. Finally, the effectiveness of the proposed method is verified.

Performance of Support Vector Machine for Classifying Land Cover in Optical Satellite Images: A Case Study in Delaware River Port Area

  • Ramayanti, Suci;Kim, Bong Chan;Park, Sungjae;Lee, Chang-Wook
    • 대한원격탐사학회지
    • /
    • 제38권6_4호
    • /
    • pp.1911-1923
    • /
    • 2022
  • The availability of high-resolution satellite images provides precise information without direct observation of the research target. Korea Multi-Purpose Satellite (KOMPSAT), also known as the Arirang satellite, has been developed and utilized for earth observation. The machine learning model was continuously proven as a good classifier in classifying remotely sensed images. This study aimed to compare the performance of the support vector machine (SVM) model in classifying the land cover of the Delaware River port area on high and medium-resolution images. Three optical images, which are KOMPSAT-2, KOMPSAT-3A, and Sentinel-2B, were classified into six land cover classes, including water, road, vegetation, building, vacant, and shadow. The KOMPSAT images are provided by Korea Aerospace Research Institute (KARI), and the Sentinel-2B image was provided by the European Space Agency (ESA). The training samples were manually digitized for each land cover class and considered the reference image. The predicted images were compared to the actual data to obtain the accuracy assessment using a confusion matrix analysis. In addition, the time-consuming training and classifying were recorded to evaluate the model performance. The results showed that the KOMPSAT-3A image has the highest overall accuracy and followed by KOMPSAT-2 and Sentinel-2B results. On the contrary, the model took a long time to classify the higher-resolution image compared to the lower resolution. For that reason, we can conclude that the SVM model performed better in the higher resolution image with the consequence of the longer time-consuming training and classifying data. Thus, this finding might provide consideration for related researchers when selecting satellite imagery for effective and accurate image classification.

Landsat-8 위성영상 기반 수분지수 및 기계학습을 활용한 대구광역시의 지표수 탐지 (Detection of Surface Water Bodies in Daegu Using Various Water Indices and Machine Learning Technique Based on the Landsat-8 Satellite Image)

  • 정윤재;김경섭;박인선;정연인
    • 한국지리정보학회지
    • /
    • 제24권1호
    • /
    • pp.1-11
    • /
    • 2021
  • 위성영상을 활용한 하천, 습지, 호수 등 지표수 객체의 탐지는 해당 지역의 수자원 관리 및 조사 업무에 효율적으로 활용될 수 있다. 본 연구에서는 원격탐사 분야에서 물을 탐지하기 위해 제공하는 수분지수(Water Index)와 영상으로부터 객체를 인식하는 데 폭넓게 활용되는 기계학습(Machine learning) 기법을 대구광역시를 촬영한 Landsat-8 위성영상에 개별적으로 적용하여 하천, 호수 등 다양한 지표수 객체를 탐지하고 그 결과를 비교하였다. 우선 Landsat-8 위성영상의 다중분광 밴드로부터 NDWI(Normalized Difference Water Index), MNDWI(Modified Normalized Difference Water Index) 영상을 생성하였고, 임계치를 적용하여 개별 영상으로부터 물과 그 외 지역을 구분할 수 있는 이진 영상(Binary image)을 제작하였다. 그리고 기계학습 기법인 SVM(Support Vector Machine)을 동일 위성영상에 적용하여 토지 피복 영상을 제작하고 이로부터 이진 영상을 제작하였다. 최종적으로 100개의 검사점(Checkpoints)을 사용하여 세 이진 영상으로부터 지표수 탐지를 위한 정확도를 오차 행렬을 활용하여 계산하였다. 그 결과, MNDWI 영상으로부터 제작된 이진 영상의 정확도(84%)가 NDWI 영상으로부터 제작된 이진 영상의 정확도(94%)와 SVM에 의해 제작된 이진 영상의 정확도(96%)에 비해 낮았으며, 모든 이진 영상에서 그림자 등의 원인으로 인해 일부 육지 분류 결과가 지표수 객체로 오분류되었다.

The Efficiency of Boosting on SVM

  • 석경하;류태욱
    • Journal of the Korean Data and Information Science Society
    • /
    • 제13권2호
    • /
    • pp.55-64
    • /
    • 2002
  • In this paper, we introduce SVM(support vector machine) developed to solve the problem of generalization of neural networks. We also introduce boosting algorithm which is a general method to improve accuracy of some given learning algorithm. We propose a new algorithm combining SVM and boosting to solve classification problem. Through the experiment with real and simulated data sets, we can obtain better performance of the proposed algorithm.

  • PDF

Modified Fixed-Threshold SMO for 1-Slack Structural SVMs

  • Lee, Chang-Ki;Jang, Myung-Gil
    • ETRI Journal
    • /
    • 제32권1호
    • /
    • pp.120-128
    • /
    • 2010
  • In this paper, we describe a modified fixed-threshold sequential minimal optimization (FSMO) for 1-slack structural support vector machine (SVM) problems. Because the modified FSMO uses the fact that the formulation of 1-slack structural SVMs has no bias, it breaks down the quadratic programming (QP) problems of 1-slack structural SVMs into a series of smallest QP problems, each involving only one variable. For various test sets, the modified FSMO is as accurate as existing structural SVM implementations (n-slack and 1-slack SVM-struct) but is faster on large data sets.

에지 정보와 SVM의 결합을 통한 눈 검출 (Eye Detection using Edge Information and SVM)

  • 지형근;이경희;정용화
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.347-350
    • /
    • 2002
  • This paper describes eye detection algorithm using edge information and Support Vector Machine (SVM). We adopt an edge detection and labelling algorithm to detect isolated components. Detected candidate eye pairs finally verified by SVM using Radial Basis Function (RBF) kernel. A detection rate over the test set has been achieved more than 90%, and compared with template matching method. this proposed method significantly reduced FAR.

  • PDF

SVM을 이용한 화자인증 시스템 (Speaker Verification System Using Support Vector Machine)

  • 최우용;이경희;정용화
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.409-412
    • /
    • 2002
  • There is a growing interest in speaker verification, which verifies someone by his/her voices. This paper explains the traditional text-dependent speaker verification algorithms, DTW and HMM. This paper also introduces SVM and how this can be applied to speaker verification system. Experiments were conducted with Korean database using these algorithms. The results of experiments indicated SVM is superior to other algorithms. The EER of SVM is only 0.5% while that of HMM is 5.4%.

  • PDF

HOG 특징 기반 SVM 을 활용한 화물차 분류 시스템 (Truck Classification System Using HOG Feature - based SVM)

  • 강건우;강석주
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.345-346
    • /
    • 2018
  • 차종 별 교통량 자료는 도로의 유지관리나 분석 등의 행정 처리 업무에 필요한 기본 자료임과 동시에 각종 연구에 활용된다. 본 시스템은 그 일환으로서 화물차나 일반차량을 구분하여 특정 도로의 화물차 비율이나 교통량을 파악하는데 활용할 수 있다. 머신 러닝 알고리즘 중에서 높은 성능을 보이는 Support Vector Machine (SVM) 알고리즘을 이용하여 도로 위의 일반차량과 화물차를 구분하였다. 우선, 화물차와 일반차량의 차이를 구분하고자 각각의 영상에 대해 Histogram of Oriented Gradients (HOG) 기반 특징점을 추출하고 이에 따라 1 차원 벡터로 표현된 데이터를 SVM 으로 분류하여 구분한다.

  • PDF

정해진 기저함수가 포함되는 Nu-SVR 학습방법 (Semiparametric Nu-Support Vector Regression)

  • 김영일;조원희;박주영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.81-84
    • /
    • 2003
  • $\varepsilon$-SVR(e-Support Vector Regression)학습방법은 SV(Support Vector)들을 이용하여 함수 근사(Regression)하는 방법으로 최근 주목받고 있는 기법이다. SVM(SV machine)의 한 가지 방법으로, 신경망을 기반으로 한 다른 알고리즘들이 학습과정에서 지역적 최적해로 수렴하는 등의 문제를 한계로 갖는데 반해, 이러한 구조들을 대체할 수 있는 학습방법으로 사용될 수 있다. 일반적인 $\varepsilon$-SVR에서는 학습 데이터와 관사 함수 f사이에 허용 가능한 에러범위 $\varepsilon$값이 학습하기 전에 정해진다. 그러나 Nu-SVR(ν-version SVR)학습방법은 학습의 결과로 최적화 된 $\varepsilon$값을 얻을 수 있다. 정해진 기저함수가 포함되는 $\varepsilon$-SVR 학습방법(Sermparametric SVR)은 정해진 독립 기저함수를 사용하여 함수를 근사하는 방법으로, 일반적인 $\varepsilon$-SVR 학습방범에 비해 우수한 결과를 나타내는 것이 성공적으로 입증된 바 있다. 이에 따라, 본 논문에서는 정해진 기저함수가 포함된 ν-SVR 학습 방법을 제안하고, 이에 대한 수식을 유도하였다. 그리고, 모의 실험을 통하여 제안된 Sermparametric ν-SVR 학습 방법의 적용 가능성을 알아보았다.

  • PDF

Parameter optimization for SVM using dynamic encoding algorithm

  • Park, Young-Su;Lee, Young-Kow;Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2542-2547
    • /
    • 2005
  • In this paper, we propose a support vector machine (SVM) hyper and kernel parameter optimization method which is based on minimizing radius/margin bound which is a kind of estimation of leave-one-error. This method uses dynamic encoding algorithm for search (DEAS) and gradient information for better optimization performance. DEAS is a recently proposed optimization algorithm which is based on variable length binary encoding method. This method has less computation time than genetic algorithm (GA) based and grid search based methods and better performance on finding global optimal value than gradient based methods. It is very efficient in practical applications. Hand-written letter data of MNI steel are used to evaluate the performance.

  • PDF