• Title/Summary/Keyword: support vector machine(SVM)

Search Result 1,266, Processing Time 0.027 seconds

A Study on Korean Local Governments' Operation of Participatory Budgeting System : Classification by Support Vector Machine Technique (한국 지방자치단체의 주민참여예산제도 운영에 관한 연구 - Support Vector Machine 기법을 이용한 유형 구분)

  • Junhyun Han;Jaemin Ryou;Jayon Bae;Chunghyeok Im
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.461-466
    • /
    • 2024
  • Korean local governments operates the participatory budgeting system autonomously. This study is to classify these entities into clusters. Among the diverse machine learning methodologies(Neural Network, Rule Induction(CN2), KNN, Decision Tree, Random Forest, Gradient Boosting, SVM, Naïve Bayes), the Support Vector Machine technique emerged as the most efficacious in the analysis of 2022 Korean municipalities data. The first cluster C1 is characterized by minimal committee activity but a substantial allocation of participatory budgeting; another cluster C3 comprises cities that exhibit a passive stance. The majority of cities falls into the final cluster C2 which is noted for its proactive engagement in. Overall, most Korean local government operates the participatory busgeting system in good shape. Only a small number of cities is less active in this system. We anticipate that analyzing time-series data from the past decade in follow-up studies will further enhance the reliability of classifying local government types regarding participatory budgeting.

Hand Gesture Classification Using Multiple Doppler Radar and Machine Learning (다중 도플러 레이다와 머신러닝을 이용한 손동작 인식)

  • Baik, Kyung-Jin;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.33-41
    • /
    • 2017
  • This paper suggests a hand gesture recognition technology to control smart devices using multiple Doppler radars and a support vector machine(SVM), which is one of the machine learning algorithms. Whereas single Doppler radar can recognize only simple hand gestures, multiple Doppler radar can recognize various and complex hand gestures by using various Doppler patterns as a function of time and each device. In addition, machine learning technology can enhance recognition accuracy. In order to determine the feasibility of the suggested technology, we implemented a test-bed using two Doppler radars, NI DAQ USB-6008, and MATLAB. Using this test-bed, we can successfully classify four hand gestures, which are Push, Pull, Right Slide, and Left Slide. Applying SVM machine learning algorithm, it was confirmed the high accuracy of the hand gesture recognition.

Spam Filter by Using X2 Statistics and Support Vector Machines (카이제곱 통계량과 지지벡터기계를 이용한 스팸메일 필터)

  • Lee, Song-Wook
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.249-254
    • /
    • 2010
  • We propose an automatic spam filter for e-mail data using Support Vector Machines(SVM). We use a lexical form of a word and its part of speech(POS) tags as features and select features by chi square statistics. We represent each feature by TF(text frequency), TF-IDF, and binary weight for experiments. After training SVM with the selected features, SVM classifies each e-mail as spam or not. In experiment, the selected features improve the performance of our system and we acquired overall 98.9% of accuracy with TREC05-p1 spam corpus.

Efficient Implementation of SVM-Based Speech/Music Classification on Embedded Systems (SVM 기반 음성/음악 분류기의 효율적인 임베디드 시스템 구현)

  • Lim, Chung-Soo;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.8
    • /
    • pp.461-467
    • /
    • 2011
  • Accurate classification of input signals is the key prerequisite for variable bit-rate coding, which has been introduced in order to effectively utilize limited communication bandwidth. Especially, recent surge of multimedia services elevate the importance of speech/music classification. Among many speech/music classifier, the ones based on support vector machine (SVM) have a strong selling point, high classification accuracy, but their computational complexity and memory requirement hinder their way into actual implementations. Therefore, techniques that reduce the computational complexity and the memory requirement is inevitable, particularly for embedded systems. We first analyze implementation of an SVM-based classifier on embedded systems in terms of execution time and energy consumption, and then propose two techniques that alleviate the implementation requirements: One is a technique that removes support vectors that have insignificant contribution to the final classification, and the other is to skip processing some of input signals by virtue of strong correlations in speech/music frames. These are post-processing techniques that can work with any other optimization techniques applied during the training phase of SVM. With experiments, we validate the proposed algorithms from the perspectives of classification accuracy, execution time, and energy consumption.

Text Classification for Patents: Experiments with Unigrams, Bigrams and Different Weighting Methods

  • Im, ChanJong;Kim, DoWan;Mandl, Thomas
    • International Journal of Contents
    • /
    • v.13 no.2
    • /
    • pp.66-74
    • /
    • 2017
  • Patent classification is becoming more critical as patent filings have been increasing over the years. Despite comprehensive studies in the area, there remain several issues in classifying patents on IPC hierarchical levels. Not only structural complexity but also shortage of patents in the lower level of the hierarchy causes the decline in classification performance. Therefore, we propose a new method of classification based on different criteria that are categories defined by the domain's experts mentioned in trend analysis reports, i.e. Patent Landscape Report (PLR). Several experiments were conducted with the purpose of identifying type of features and weighting methods that lead to the best classification performance using Support Vector Machine (SVM). Two types of features (noun and noun phrases) and five different weighting schemes (TF-idf, TF-rf, TF-icf, TF-icf-based, and TF-idcef-based) were experimented on.

Training for Huge Data set with On Line Pruning Regression by LS-SVM

  • Kim, Dae-Hak;Shim, Joo-Yong;Oh, Kwang-Sik
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.137-141
    • /
    • 2003
  • LS-SVM(least squares support vector machine) is a widely applicable and useful machine learning technique for classification and regression analysis. LS-SVM can be a good substitute for statistical method but computational difficulties are still remained to operate the inversion of matrix of huge data set. In modern information society, we can easily get huge data sets by on line or batch mode. For these kind of huge data sets, we suggest an on line pruning regression method by LS-SVM. With relatively small number of pruned support vectors, we can have almost same performance as regression with full data set.

  • PDF

Simultaneous Optimization of Gene Selection and Tumor Classification Using Intelligent Genetic Algorithm and Support Vector Machine

  • Huang, Hui-Ling;Ho, Shinn-Ying
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.57-62
    • /
    • 2005
  • Microarray gene expression profiling technology is one of the most important research topics in clinical diagnosis of disease. Given thousands of genes, only a small number of them show strong correlation with a certain phenotype. To identify such an optimal subset from thousands of genes is intractable, which plays a crucial role when classify multiple-class genes express models from tumor samples. This paper proposes an efficient classifier design method to simultaneously select the most relevant genes using an intelligent genetic algorithm (IGA) and design an accurate classifier using Support Vector Machine (SVM). IGA with an intelligent crossover operation based on orthogonal experimental design can efficiently solve large-scale parameter optimization problems. Therefore, the parameters of SVM as well as the binary parameters for gene selection are all encoded in a chromosome to achieve simultaneous optimization of gene selection and the associated SVM for accurate tumor classification. The effectiveness of the proposed method IGA/SVM is evaluated using four benchmark datasets. It is shown by computer simulation that IGA/SVM performs better than the existing method in terms of classification accuracy.

  • PDF

Classification of Sitting Position by IMU Built in Neckband for Preventing Imbalance Posture (불균형 자세 예방용 IMU 내장 넥밴드를 이용한 앉은 자세 분류)

  • Ma, S.Y.;Shim, H.M.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.4
    • /
    • pp.285-291
    • /
    • 2015
  • In this paper, we propose a classification algorithm for postures of sitting person by using IMU(inertial measurement unit). This algorithm uses PCA(principle component analysis) for decreasing the number of feature vectors to three and SVM(support vector machine) with RBF(radial basis function) kernel for classifying posture types. In order to collect the data, we designed neckband-shaped earphones with IMU, and applied it to three subjects who are healthy adults. Subjects were experimented three sitting postures, which are neutral posture, smartphoning, and writing. As the result, our PCA-SVM algorithm showed 95% confidence while the dimension of the feature vectors was reduced to 25%.

  • PDF

A Hierarchical Clustering Method Based on SVM for Real-time Gas Mixture Classification

  • Kim, Guk-Hee;Kim, Young-Wung;Lee, Sang-Jin;Jeon, Gi-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.716-721
    • /
    • 2010
  • In this work we address the use of support vector machine (SVM) in the multi-class gas classification system. The objective is to classify single gases and their mixture with a semiconductor-type electronic nose. The SVM has some typical multi-class classification models; One vs. One (OVO) and One vs. All (OVA). However, studies on those models show weaknesses on calculation time, decision time and the reject region. We propose a hierarchical clustering method (HCM) based on the SVM for real-time gas mixture classification. Experimental results show that the proposed method has better performance than the typical multi-class systems based on the SVM, and that the proposed method can classify single gases and their mixture easily and fast in the embedded system compared with BP-MLP and Fuzzy ARTMAP.

Numerical modelling of shelter effect of porous wind fences

  • Janardhan, Prashanth;Narayana, Harish
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.313-321
    • /
    • 2019
  • The wind blowing at high velocity in an open storage yard leads to wind erosion and loss of material. Fence structures can be constructed around the periphery of the storage yard to reduce the erosion. The fence will cause turbulence and recirculation behind it which can be utilized to reduce the wind erosion and loss of material. A properly designed fence system will produce lesser turbulence and longer shelter effect. This paper aims to show the applicability of Support Vector Machine (SVM) to predict the recirculation length. A SVM model was built, trained and tested using the experimental data gathered from the literature. The newly developed model is compared with numerical turbulence model, in particular, modified $k-{\varepsilon}$ model along with the experimental results. From the results, it was observed that the SVM model has a better capability in predicting the recirculation length. The SVM model was able to predict the recirculation length at a lesser time as compared to modified $k-{\varepsilon}$ model. All the results are analyzed in terms of statistical measures, such as root mean square error, correlation coefficient, and scatter index. These examinations demonstrate that SVM has a strong potential as a feasible tool for predicting recirculation length.