• Title/Summary/Keyword: support vector machine(SVM)

Search Result 1,266, Processing Time 0.026 seconds

적응형 부스팅을 이용한 파산 예측 모형: 건설업을 중심으로 (Bankruptcy Forecasting Model using AdaBoost: A Focus on Construction Companies)

  • 허준영;양진용
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.35-48
    • /
    • 2014
  • 2013년 건설 경기 전망 보고서에 따르면 주택건설경기 침체 상황의 지속으로 건설 기업의 유동성 위기가 지속될 것으로 전망된다. 건설업은 파산으로 인한 사회적 파급효과가 다른 산업에 비해 큰 편이지만, 업종의 특성상 다른 산업과는 상이한 자본구조와 부채비율, 현금흐름을 가지고 있어서 기업의 파산 예측이 더 어려운 측면이 있다. 건설업은 레버리지가 큰 산업으로 부채비율이 매우 높은 업종이며 현금흐름이 프로젝트 후반부에 집중되는 특성이 있다. 그리고 경기사이클에 따른 부침이 매우 심하여 경기하강국면에선 파산이 급증하는 양상을 보인다. 건설업이 레버리지 산업인 이상 건설업체의 파산율 증가는 여신을 공여한 은행에 큰 부담으로 작용한다. 그럼에도 그간의 파산예측모델이 주로 금융기관에 집중되어 왔고 건설업종에 특화된 연구는 드물었다. 기업의 재무 자료를 바탕으로 한 파산 예측 모델에 대한 연구는 오래 전부터 다양하게 진행되었다. 하지만, 일반적인 기업 전체를 대상으로 하는 모델이기 때문에, 건설 기업과 같이 유동성이 큰 기업의 예측에는 적절하지 못할 수 있다. 건설 산업은 오랜 사업 기간과 대규모 투자, 그리고 투자금 회수가 오래 걸리는 특징을 갖는 자본 집약 산업이다. 이로 인해 다른 산업과는 상이한 자본 구조를 갖기 마련이고, 다른 산업의 기업 재무 위험도를 판단하는 기준과 동일한 적용이 곤란할 수 있다. 최근에는 기계 학습을 바탕으로 한 기업 파산 예측 연구가 활발하다. 기계 학습의 대표적 응용 분야인 패턴 인식을 기업의 파산 예측에 응용한 것이다. 기업의 재무 정보를 바탕으로 패턴을 작성하고 이 패턴이 파산 위험 군에 속하는지 안전한 군에 속하는지 판단하는 것이다. 전통적인 Z-Score와 기계 학습을 이용한 파산 예측과 같은 기존 연구들은 특정 산업 분야가 아닌 일반적인 기업을 대상으로 하기 때문에 기업들의 특성을 전혀 고려하고 있지 못하다. 본 논문에서는 건설 기업을 규모에 따라 각 기법들의 예측 능력을 비교하여 적응형 부스팅이 가장 우수함을 확인하였다. 본 논문은 건설 기업을 자본금 규모에 따라 세 등급으로 분류하고 각각에 대해 적응형 부스팅의 예측력을 분석하였다. 실험 결과 적응형 부스팅이 다른 기법에 비해 예측 결과가 좋았고, 특히 자본금 규모가 500억 이상인 기업의 경우 아주 우수한 결과를 보였다.

CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석 (Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.141-154
    • /
    • 2019
  • 인터넷 기술과 소셜 미디어의 빠른 성장으로 인하여, 구조화되지 않은 문서 표현도 다양한 응용 프로그램에 사용할 수 있게 마이닝 기술이 발전되었다. 그 중 감성분석은 제품이나 서비스에 내재된 사용자의 감성을 탐지할 수 있는 분석방법이기 때문에 지난 몇 년 동안 많은 관심을 받아왔다. 감성분석에서는 주로 텍스트 데이터를 이용하여 사람들의 감성을 사전 정의된 긍정 및 부정의 범주를 할당하여 분석하며, 이때 사전 정의된 레이블을 이용하기 때문에 다양한 방향으로 연구가 진행되고 있다. 초기의 감성분석 연구에서는 쇼핑몰 상품의 리뷰 중심으로 진행되었지만, 최근에는 블로그, 뉴스기사, 날씨 예보, 영화 리뷰, SNS, 주식시장의 동향 등 다양한 분야에 적용되고 있다. 많은 선행연구들이 진행되어 왔으나 대부분 전통적인 단일 기계학습기법에 의존한 감성분류를 시도하였기에 분류 정확도 면에서 한계점이 있었다. 본 연구에서는 전통적인 기계학습기법 대신 대용량 데이터의 처리에 우수한 성능을 보이는 딥러닝 기법과 딥러닝 중 CNN과 LSTM의 조합모델을 이용하여 감성분석의 분류 정확도를 개선하고자 한다. 본 연구에서는 대표적인 영화 리뷰 데이터셋인 IMDB의 리뷰 데이터 셋을 이용하여, 감성분석의 극성분석을 긍정 및 부정으로 범주를 분류하고, 딥러닝과 제안하는 조합모델을 활용하여 극성분석의 예측 정확도를 개선하는 것을 목적으로 한다. 이 과정에서 여러 매개 변수가 존재하기 때문에 그 수치와 정밀도의 관계에 대해 고찰하여 최적의 조합을 찾아 정확도 등 감성분석의 성능 개선을 시도한다. 연구 결과, 딥러닝 기반의 분류 모형이 좋은 분류성과를 보였으며, 특히 본 연구에서 제안하는 CNN-LSTM 조합모델의 성과가 가장 우수한 것으로 나타났다.

영화 리뷰 감성분석을 위한 텍스트 마이닝 기반 감성 분류기 구축 (A Study on Analyzing Sentiments on Movie Reviews by Multi-Level Sentiment Classifier)

  • 김유영;송민
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.71-89
    • /
    • 2016
  • 누구나 본인이 사용한 제품이나, 이용한 서비스에 대한 후기를 자유롭게 인터넷에 작성할 수 있고, 이러한 데이터의 양은 점점 더 많아지고 있다. 감성분석은 사용자가 생성한 온라인 텍스트 속에 내포된 감성 및 감정을 식별하기 위해 사용된다. 본 연구는 다양한 데이터 도메인 중 영화 리뷰를 분석 대상으로 한다. 영화 리뷰를 이용한 기존 연구에서는 종종 리뷰 평점을 관객의 감성으로 동일시하여 감성분석에 이용한다. 그러나 리뷰 내용과 평점의 실제적 극성 정도가 항상 일치하는 것은 아니기 때문에 연구의 정확성에 한계가 발생할 수 있다. 이에 본 연구에서는 기계학습 기반의 감성 분류기를 구축하고, 이를 통해 리뷰의 감성점수를 산출하여 리뷰에서 나타나는 감성의 수치화를 목표로 한다. 나아가 산출된 감성점수를 이용하여 리뷰와 영화 흥행 간의 연관성을 살펴보았다. 감성분석 모델은 지지벡터 분류기와 신경망을 이용해 구축되었고, 총 1만 건의 영화 리뷰를 학습용 데이터로 하였다. 감성분석은 총 175편의 영화에 대한 1,258,538개의 리뷰에 적용하였다. 리뷰의 평점과 흥행, 그리고 감성점수와 흥행과의 연관성은 상관분석을 통해 살펴보았고, t-검정으로 두 지표의 평균차를 비교하여 감성점수의 활용성을 검증하였다. 연구 결과, 본 연구에서 제시하는 모델 구축 방법은 나이브 베이즈 분류기로 구축한 모델보다 높은 정확성을 보였다. 상관분석 결과로는, 영화의 주간 평균 평점과 관객 수 간의 유의미한 양의 상관관계가 나타났고, 감성점수와 관객 수 간의 상관분석에서도 유사한 결과가 도출되었다. 이에 두 지표간의 평균을 이용한 t-검정을 수행하고, 이를 바탕으로 산출한 감성점수를 리뷰 평점의 역할을 할 수 있는 지표로써 활용 가능함을 검증하였다. 나아가 검증된 결론을 근거로, 트위터에서 영화를 언급한 트윗을 수집하여 감성분석을 적용한 결과를 살펴봄으로써 감성분석 모델의 활용 방안을 모색하였다. 전체적 실험 및 검증의 과정을 통해 본 연구는 감성분석 연구에 있어 개선된 감성 분류 방법을 제시할 수 있음을 보였고, 이러한 점에서 연구의 의의가 있다.

기업의 SNS 노출과 주식 수익률간의 관계 분석 (The Analysis on the Relationship between Firms' Exposures to SNS and Stock Prices in Korea)

  • 김태환;정우진;이상용
    • Asia pacific journal of information systems
    • /
    • 제24권2호
    • /
    • pp.233-253
    • /
    • 2014
  • Can the stock market really be predicted? Stock market prediction has attracted much attention from many fields including business, economics, statistics, and mathematics. Early research on stock market prediction was based on random walk theory (RWT) and the efficient market hypothesis (EMH). According to the EMH, stock market are largely driven by new information rather than present and past prices. Since it is unpredictable, stock market will follow a random walk. Even though these theories, Schumaker [2010] asserted that people keep trying to predict the stock market by using artificial intelligence, statistical estimates, and mathematical models. Mathematical approaches include Percolation Methods, Log-Periodic Oscillations and Wavelet Transforms to model future prices. Examples of artificial intelligence approaches that deals with optimization and machine learning are Genetic Algorithms, Support Vector Machines (SVM) and Neural Networks. Statistical approaches typically predicts the future by using past stock market data. Recently, financial engineers have started to predict the stock prices movement pattern by using the SNS data. SNS is the place where peoples opinions and ideas are freely flow and affect others' beliefs on certain things. Through word-of-mouth in SNS, people share product usage experiences, subjective feelings, and commonly accompanying sentiment or mood with others. An increasing number of empirical analyses of sentiment and mood are based on textual collections of public user generated data on the web. The Opinion mining is one domain of the data mining fields extracting public opinions exposed in SNS by utilizing data mining. There have been many studies on the issues of opinion mining from Web sources such as product reviews, forum posts and blogs. In relation to this literatures, we are trying to understand the effects of SNS exposures of firms on stock prices in Korea. Similarly to Bollen et al. [2011], we empirically analyze the impact of SNS exposures on stock return rates. We use Social Metrics by Daum Soft, an SNS big data analysis company in Korea. Social Metrics provides trends and public opinions in Twitter and blogs by using natural language process and analysis tools. It collects the sentences circulated in the Twitter in real time, and breaks down these sentences into the word units and then extracts keywords. In this study, we classify firms' exposures in SNS into two groups: positive and negative. To test the correlation and causation relationship between SNS exposures and stock price returns, we first collect 252 firms' stock prices and KRX100 index in the Korea Stock Exchange (KRX) from May 25, 2012 to September 1, 2012. We also gather the public attitudes (positive, negative) about these firms from Social Metrics over the same period of time. We conduct regression analysis between stock prices and the number of SNS exposures. Having checked the correlation between the two variables, we perform Granger causality test to see the causation direction between the two variables. The research result is that the number of total SNS exposures is positively related with stock market returns. The number of positive mentions of has also positive relationship with stock market returns. Contrarily, the number of negative mentions has negative relationship with stock market returns, but this relationship is statistically not significant. This means that the impact of positive mentions is statistically bigger than the impact of negative mentions. We also investigate whether the impacts are moderated by industry type and firm's size. We find that the SNS exposures impacts are bigger for IT firms than for non-IT firms, and bigger for small sized firms than for large sized firms. The results of Granger causality test shows change of stock price return is caused by SNS exposures, while the causation of the other way round is not significant. Therefore the correlation relationship between SNS exposures and stock prices has uni-direction causality. The more a firm is exposed in SNS, the more is the stock price likely to increase, while stock price changes may not cause more SNS mentions.

방향성매매를 위한 지능형 매매시스템의 투자성과분석 (Analysis of Trading Performance on Intelligent Trading System for Directional Trading)

  • 최흥식;김선웅;박성철
    • 지능정보연구
    • /
    • 제17권3호
    • /
    • pp.187-201
    • /
    • 2011
  • 방향성(Direction)과 변동성(Volatility)에 대한 분석은 증권투자를 위한 시장분석의 기초가 된다. 변동성분석이 옵션 투자에서 중요하다면 주식이나 주가지수선물투자는 방향성분석에 의하여 투자성과가 결정된다. 기존의 금융분석에서 기계학습을 이용한 방향성에 대한 연구는 주가나 투자위험의 예측을 중심으로 이루어졌으며, 최근에 와서야 실전투자를 위한 매매시스템(trading system) 개발에 대한 연구가 이루어지고 있다. 인공지능형 주가예측모형에서는 ANN(artificial neural networks), fuzzy system, SVM(Support Vector Machine) 등의 기법이 주로 활용되고 있다. 본 연구에서는 방향성매매를 위한 지능형 기계학습방법 중에서도 패턴인식에서 좋은 성과를 보이고 있는 은닉마코프 모형(Hidden Markov Model)을 이용한다. 실무적으로는 방향성 예측을 위해 주로 주가의 추세분석(Trend Analysis)을 활용한다. 다양한 기술적 지표를 이용한 추세분석에 기반한 시스템트레이딩(System Trading) 기법은 실전투자에서 점차 확대추세에 있다. 본 연구에서는 시스템트레이딩 기법 중 실무에서 많이 이용되는 이동평균교차전략(moving average cross)에 연속 은닉마코프모형을 적용한 지능형 매매시스템을 제안하고, 실제 주가자료를 이용한 시뮬레이션 결과를 제시한다. 세계적 선물시장으로 성장한 KOSPI200 선물시장에서 제안된 매매시스템의 장기간의 투자성과를 분석하기 위하여 지난 21년 동안의 KOSPI200 주가지수자료를 실증 분석하였다. 분석결과는 KOSPI200 주가지수선물의 방향성매매에서 제안된 CHMM기반 지능형 매매시스템이 실전에서 일반적으로 활용되는 시스템트레이딩 기법의 투자성과를 개선할 수 있음을 보여주었다.

S-MTS를 이용한 강판의 표면 결함 진단 (Steel Plate Faults Diagnosis with S-MTS)

  • 김준영;차재민;신중욱;염충섭
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.47-67
    • /
    • 2017
  • 강판 표면 결함은 강판의 품질과 가격을 결정하는 중요한 요인 중 하나로, 많은 철강 업체는 그동안 검사자의 육안으로 강판 표면 결함을 확인해왔다. 그러나 시각에 의존한 검사는 통상 30% 이상의 판단 오류가 발생함에 따라 검사 신뢰도가 낮은 문제점을 갖고 있다. 따라서 본 연구는 Simultaneous MTS (S-MTS) 알고리즘을 적용하여 보다 지능적이고 높은 정확도를 갖는 새로운 강판 표면 결함 진단 시스템을 제안하였다. S-MTS 알고리즘은 단일 클래스 분류에는 효과적이지만 다중 클래스 분류에서 정확도가 떨어지는 기존 마할라노비스 다구찌시스템 알고리즘(Mahalanobis Taguchi System; MTS)의 문제점을 해결한 새로운 알고리즘이다. 강판 표면 결함 진단은 대표적인 다중 클래스 분류 문제에 해당하므로, 강판 표면 결함 진단 시스템 구축을 위해 본 연구에서는 S-MTS 알고리즘을 채택하였다. 강판 표면 결함 진단 시스템 개발은 S-MTS 알고리즘에 따라 다음과 같이 진행하였다. 첫째, 각 강판 표면 결함 별로 개별적인 참조 그룹 마할라노비스 공간(Mahalanobis Space; MS)을 구축하였다. 둘째, 구축된 참조 그룹 MS를 기반으로 비교 그룹 마할라노비스 거리(Mahalanobis Distance; MD)를 계산한 후 최소 MD를 갖는 강판 표면 결함을 비교 그룹의 강판 표면 결함으로 판단하였다. 셋째, 강판 표면 결함을 분류하는 데 있어 결함 간의 차이점을 명확하게 해주는 예측 능력이 높은 변수를 파악하였다. 넷째, 예측 능력이 높은 변수만을 이용해 강판 표면 결함 분류를 재수행함으로써 최종적인 강판 표면 결함 진단 시스템을 구축한다. 이와 같은 과정을 통해 구축한 S-MTS 기반 강판 표면 결함 진단 시스템의 정확도는 90.79%로, 이는 기존 검사 방법에 비해 매우 높은 정확도를 갖는 유용한 방법임을 보여준다. 추후 연구에서는 본 연구를 통해 개발된 시스템을 현장 적용하여, 실제 효과성을 검증할 필요가 있다.