• Title/Summary/Keyword: support vector machine(SVM)

Search Result 1,254, Processing Time 0.029 seconds

Development of a Model for Winner Prediction in TV Audition Program Using Machine Learning Method: Focusing on Program (머신러닝을 활용한 TV 오디션 프로그램의 우승자 예측 모형 개발: 프로듀스X 101 프로그램을 중심으로)

  • Gwak, Juyoung;Yoon, Hyun Shik
    • Knowledge Management Research
    • /
    • v.20 no.3
    • /
    • pp.155-171
    • /
    • 2019
  • In the entertainment industry which has great uncertainty, it is essential to predict public preference first. Thanks to various mass media channels such as cable TV and internet-based streaming services, the reality audition program has been getting big attention every day and it is being used as a new window to new entertainers' debut. This phenomenon means that it is changing from a closed selection process to an open selection process, which delegates selection rights to the public. This is characterized by the popularity of the public being reflected in the selection process. Therefore, this study aims to implement a machine learning model which predicts the winner of , which has recently been popular in South Korea. By doing so, this study is to extend the research method in the cultural industry and to suggest practical implications. We collected the data of winners from the 1st, 2nd, and 3rd seasons of the Produce 101 and implemented the predictive model through the machine learning method with the accumulated data. We tried to develop the best predictive model that can predict winners of by using four machine learning methods such as Random Forest, Decision Tree, Support Vector Machine (SVM), and Neural Network. This study found that the audience voting and the amount of internet news articles on each participant were the main variables for predicting the winner and extended the discussion by analyzing the precision of prediction.

Hierarchical Internet Application Traffic Classification using a Multi-class SVM (다중 클래스 SVM을 이용한 계층적 인터넷 애플리케이션 트래픽의 분류)

  • Yu, Jae-Hak;Lee, Han-Sung;Im, Young-Hee;Kim, Myung-Sup;Park, Dai-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.7-14
    • /
    • 2010
  • In this paper, we introduce a hierarchical internet application traffic classification system based on SVM as an alternative overcoming the uppermost limit of the conventional methodology which is using the port number or payload information. After selecting an optimal attribute subset of the bidirectional traffic flow data collected from the campus, the proposed system classifies the internet application traffic hierarchically. The system is composed of three layers: the first layer quickly determines P2P traffic and non-P2P traffic using a SVM, the second layer classifies P2P traffics into file-sharing, messenger, and TV, based on three SVDDs. The third layer makes specific classification of the entire 16 application traffics. By classifying the internet application traffic finely or coarsely, the proposed system can guarantee an efficient system resource management, a stable network environment, a seamless bandwidth, and an appropriate QoS. Also, even a new application traffic is added, it is possible to have a system incremental updating and scalability by training only a new SVDD without retraining the whole system. We validate the performance of our approach with computer experiments.

An Integrated Model based on Genetic Algorithms for Implementing Cost-Effective Intelligent Intrusion Detection Systems (비용효율적 지능형 침입탐지시스템 구현을 위한 유전자 알고리즘 기반 통합 모형)

  • Lee, Hyeon-Uk;Kim, Ji-Hun;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.125-141
    • /
    • 2012
  • These days, the malicious attacks and hacks on the networked systems are dramatically increasing, and the patterns of them are changing rapidly. Consequently, it becomes more important to appropriately handle these malicious attacks and hacks, and there exist sufficient interests and demand in effective network security systems just like intrusion detection systems. Intrusion detection systems are the network security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. Conventional intrusion detection systems have generally been designed using the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. However, they cannot handle new or unknown patterns of the network attacks, although they perform very well under the normal situation. As a result, recent studies on intrusion detection systems use artificial intelligence techniques, which can proactively respond to the unknown threats. For a long time, researchers have adopted and tested various kinds of artificial intelligence techniques such as artificial neural networks, decision trees, and support vector machines to detect intrusions on the network. However, most of them have just applied these techniques singularly, even though combining the techniques may lead to better detection. With this reason, we propose a new integrated model for intrusion detection. Our model is designed to combine prediction results of four different binary classification models-logistic regression (LOGIT), decision trees (DT), artificial neural networks (ANN), and support vector machines (SVM), which may be complementary to each other. As a tool for finding optimal combining weights, genetic algorithms (GA) are used. Our proposed model is designed to be built in two steps. At the first step, the optimal integration model whose prediction error (i.e. erroneous classification rate) is the least is generated. After that, in the second step, it explores the optimal classification threshold for determining intrusions, which minimizes the total misclassification cost. To calculate the total misclassification cost of intrusion detection system, we need to understand its asymmetric error cost scheme. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, total misclassification cost is more affected by FNE rather than FPE. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 10,000 samples from them by using random sampling method. Also, we compared the results from our model with the results from single techniques to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell R4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on GA outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that the proposed model outperformed all the other comparative models in the total misclassification cost perspective. Consequently, it is expected that our study may contribute to build cost-effective intelligent intrusion detection systems.

Comparative analysis of Machine-Learning Based Models for Metal Surface Defect Detection (머신러닝 기반 금속외관 결함 검출 비교 분석)

  • Lee, Se-Hun;Kang, Seong-Hwan;Shin, Yo-Seob;Choi, Oh-Kyu;Kim, Sijong;Kang, Jae-Mo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.834-841
    • /
    • 2022
  • Recently, applying artificial intelligence technologies in various fields of production has drawn an upsurge of research interest due to the increase for smart factory and artificial intelligence technologies. A great deal of effort is being made to introduce artificial intelligence algorithms into the defect detection task. Particularly, detection of defects on the surface of metal has a higher level of research interest compared to other materials (wood, plastics, fibers, etc.). In this paper, we compare and analyze the speed and performance of defect classification by combining machine learning techniques (Support Vector Machine, Softmax Regression, Decision Tree) with dimensionality reduction algorithms (Principal Component Analysis, AutoEncoders) and two convolutional neural networks (proposed method, ResNet). To validate and compare the performance and speed of the algorithms, we have adopted two datasets ((i) public dataset, (ii) actual dataset), and on the basis of the results, the most efficient algorithm is determined.

Prediction of Water Usage in Pig Farm based on Machine Learning (기계학습을 이용한 돈사 급수량 예측방안 개발)

  • Lee, Woongsup;Ryu, Jongyeol;Ban, Tae-Won;Kim, Seong Hwan;Choi, Heechul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1560-1566
    • /
    • 2017
  • Recently, accumulation of data on pig farm is enabled through the wide spread of smart pig farm equipped with Internet-of-Things based sensors, and various machine learning algorithms are applied on the data in order to improve the productivity of pig farm. Herein, multiple machine learning schemes are used to predict the water usage in pig farm which is known to be one of the most important element in pig farm management. Especially, regression algorithms, which are linear regression, regression tree and AdaBoost regression, and classification algorithms which are logistic classification, decision tree and support vector machine, are applied to derive a prediction scheme which forecast the water usage based on the temperature and humidity of pig farm. Through performance evaluation, we find that the water usage can be predicted with high accuracy. The proposed scheme can be used to detect the malfunction of water system which prevents the death of pigs and reduces the loss of pig farm.

Predicting Daily Nutrient Water Consumption by Strawberry Plants in a Greenhouse Environment

  • Sathishkumar, VE;Lee, Myeong-Bae;Lim, Jong-Hyun;Shin, Chang-Sun;Park, Chang-Woo;Cho, Yong Yun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.581-584
    • /
    • 2019
  • Food consumption is growing worldwide every year owing to a growing population. Hence, the increasing population needs the production of sufficient and good quality food products. Strawberry is one of the world's most famous fruit. To obtain the highest strawberry output, we worked with three strawberry varieties supplied with three kinds of nutrient water in a greenhouse and with the outcome of the strawberry production, the highest yielding strawberry variety is detected. This Study uses the nutrient water consumed every day by the highest yielding strawberry variety. The atmospheric temperature, humidity and CO2 levels within the greenhouse are identified and used for the prediction, since the water consumption by any plant depends primarily on weather conditions. Machine learning techniques show successful outcomes in a multitude of issues including time series and regression issues. In this study, daily nutrient water consumption of strawberry plants is predicted using machine learning algorithms is proposed. Four Machine learning algorithms are used such as Linear Regression (LR), K nearest neighbour (KNN), Support Vector Machine with Radial Kernel (SVM) and Gradient Boosting Machine (GBM). Gradient Boosting System produces the best results.

A Design of Customized Market Analysis Scheme Using SVM and Collaboration Filtering Scheme (SVM과 협업적 필터링 기법을 이용한 소비자 맞춤형 시장 분석 기법 설계)

  • Jeong, Eun-Hee;Lee, Byung-Kwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.609-616
    • /
    • 2016
  • This paper is proposed a customized market analysis method using SVM and collaborative filtering. The proposed customized market analysis scheme is consists of DC(Data Classification) module, ICF(Improved Collaborative Filtering) module, and CMA(Customized Market Analysis) module. DC module classifies the characteristics of on-line and off-line shopping mall and traditional markets into price, quality, and quantity using SVM. ICF module calculates the similarity by adding age weight and job weight, and generates network using the similarity of purchased item each users, and makes a recommendation list of neighbor nodes. And CMA module provides the result of customized market analysis using the data classification result of DC module and the recommendation list of ICF module. As a result of comparing the proposed customized recommendation list with the existing user based recommendation list, the case of recommendation list using the existing collaborative filtering scheme, precision is 0.53, recall is 0.56, and F-measure is 0.57. But the case of proposed customized recommendation list, precision is 0.78, recall is 0.85, and F-measure is 0.81. That is, the proposed customized recommendation list shows more precision.

A Predictive Model of the Generator Output Based on the Learning of Performance Data in Power Plant (발전플랜트 성능데이터 학습에 의한 발전기 출력 추정 모델)

  • Yang, HacJin;Kim, Seong Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8753-8759
    • /
    • 2015
  • Establishment of analysis procedures and validated performance measurements for generator output is required to maintain stable management of generator output in turbine power generation cycle. We developed turbine expansion model and measurement validation model for the performance calculation of generator using turbine output based on ASME (American Society of Mechanical Engineers) PTC (Performance Test Code). We also developed verification model for uncertain measurement data related to the turbine and generator output. Although the model in previous researches was developed using artificial neural network and kernel regression, the verification model in this paper was based on algorithms through Support Vector Machine (SVM) model to overcome the problems of unmeasured data. The selection procedures of related variables and data window for verification learning was also developed. The model reveals suitability in the estimation procss as the learning error was in the range of about 1%. The learning model can provide validated estimations for corrective performance analysis of turbine cycle output using the predictions of measurement data loss.

A Study of the Feature Classification and the Predictive Model of Main Feed-Water Flow for Turbine Cycle (주급수 유량의 형상 분류 및 추정 모델에 대한 연구)

  • Yang, Hac Jin;Kim, Seong Kun;Choi, Kwang Hee
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.263-271
    • /
    • 2014
  • Corrective thermal performance analysis is required for thermal power plants to determine performance status of turbine cycle. We developed classification method for main feed water flow to make precise correction for performance analysis based on ASME (American Society of Mechanical Engineers) PTC (Performance Test Code). The classification is based on feature identification of status of main water flow. Also we developed predictive algorithms for corrected main feed-water through Support Vector Machine (SVM) Model for each classified feature area. The results was compared to estimations using Neural Network(NN) and Kernel Regression(KR). The feature classification and predictive model of main feed-water flow provides more practical methods for corrective thermal performance analysis of turbine cycle.

Shallow Parsing on Grammatical Relations in Korean Sentences (한국어 문법관계에 대한 부분구문 분석)

  • Lee, Song-Wook;Seo, Jung-Yun
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.10
    • /
    • pp.984-989
    • /
    • 2005
  • This study aims to identify grammatical relations (GRs) in Korean sentences. The key task is to find the GRs in sentences in terms of such GR categories as subject, object, and adverbial. To overcome this problem, we are fared with the many ambiguities. We propose a statistical model, which resolves the grammatical relational ambiguity first, and then finds correct noun phrases (NPs) arguments of given verb phrases (VP) by using the probabilities of the GRs given NPs and VPs in sentences. The proposed model uses the characteristics of the Korean language such as distance, no-crossing and case property. We attempt to estimate the probabilities of GR given an NP and a VP with Support Vector Machines (SVM) classifiers. Through an experiment with a tree and GR tagged corpus for training the model, we achieved an overall accuracy of $84.8\%,\;94.1\%,\;and\;84.8\%$ in identifying subject, object, and adverbial relations in sentences, respectively.