• Title/Summary/Keyword: supply uncertainty

Search Result 226, Processing Time 0.033 seconds

An Evaluation of the Economic Value of Outsourcing of Water Supply Services Considering Uncertainty of Water Price (수도요금의 불확실성을 고려한 상수도 사업의 가치 평가)

  • Jeong, In-Chan;Kim, Jae-Hee;Kim, Sheung-Kown
    • Korean Management Science Review
    • /
    • v.31 no.3
    • /
    • pp.95-111
    • /
    • 2014
  • It is essential to carry out an economic analysis on public water supply projects so that policy makers and water enterprises are aware of the actual value of the project. However, many popular approaches based on discounted cash flow analysis do not capture the uncertainties inherent in cash flow. In order to analyze the economic values of the water supply project of local governments, we utilize real option model, which considers uncertainty in future water price behavior and captures the value of real life flexibility. The real option model is designed to incorporate the option to expand and abandon, and it is applied to a local government case. Furthermore, we assess the project by exploring Luehrman's option space to accommodate the more efficient decision making. The results show that substantial amount of potential value is included in the public water supply service, and the overall value is greater than the value obtained from the discounted cash flow model.

The Effect of Supply Chain Dynamic Capabilities, Open Innovation and Supply Uncertainty on Supply Chain Performance (공급사슬 동적역량, 개방형 혁신, 공급 불확실성이 공급사슬 성과에 미치는 영향)

  • Lee, Sang-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.481-491
    • /
    • 2018
  • As the global business environment is dynamic, uncertain, and complex, supply chain management determines the performance of the supply chain in terms of the utilization of resources and capabilities of companies involved in the supply chain. Companies pursuing open innovation gain greater access to the external environment and accumulate knowledge flows and learning experiences, and may generate better business performance from dynamic capabilities. This study analyzed the effects of supply chain dynamic capabilities, open innovation, and supply uncertainty on supply chain performance. Through questionnaires on 178 companies listed on KOSDAQ, empirical results are as follows: First, integration and reactivity capabilities among supply chain dynamic capabilities have a positive effect on supply chain performance. Second, the moderating effect of open innovation showed a negative correlation in the case of information exchange, and a positive correlation in the cases of integration, cooperation and reactivity. Third, two of the 3-way interaction terms, "information exchange*open innovation*supply uncertainty" and "integration*open innovation*supply uncertainty" were statistically significant. The implications of this study are as follows: First, as the supply chain needs to achieve optimization of the whole process between supply chain components rather than individual companies, dynamic capabilities play an important role in improving performance. Second, for KOSDAQ companies featuring limited capital resources, open innovation that integrates external knowledge is valuable. In order to increase synergistic effects, it is necessary to develop dynamic capabilities accordingly. Third, since resources are constrained, managers must determine the type or level of capabilities and open innovation in accordance with supply uncertainty. Since this study has limitations in analyzing survey data, it is necessary to collect secondary data or longitudinal data. It is also necessary to further analyze the internal and external factors that have a significant impact on supply chain performance.

Analysis of the Value of Yield Information under Periodic Review Inventory System (정기발주 재고모형에서 공급자 수율 정보 공유의 기대효과 분석)

  • Min, Dai-Ki
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.36 no.3
    • /
    • pp.61-74
    • /
    • 2011
  • The objective of this study is to evaluate the effects of sharing uncertain yield information with a downstream supply chain player. We are interested in understanding how the amount of yield uncertainty affects the supply-side benefits and/or costs, which has not been considered in the literature, in addition to the customer-side benefits. With that purpose, this work evaluates a supplier who provides yield information in comparison with another supplier who shares no information. We simulate an order-up-to type heuristic policy that is adapted from the literature and reasonably modified to represent yield information sharing with error. From the simulation study, we argue that the customer would experience cost reduction, but the cost for supplier's inventory is increasing when sharing yield information. Furthermore, the amount of benefits and costs are situational and affected by level of yield uncertainty and demand variance. Based on the simulation study, we finally make several recommendations for the supply-side approaches to yield information sharing.

A Study on the Production Environment of Apparel Manufacture (의류제조업체의 생산환경에 관한 연구)

  • Sun-Hee Lee;Mi-A Suh
    • The Research Journal of the Costume Culture
    • /
    • v.8 no.1
    • /
    • pp.30-39
    • /
    • 2000
  • The purpose of this study were to 1) identify types and levels of production environments, 2) classify apparel manufacturers based on production environments and 3) investigate relationship between characteristics of apparel manufacturers and production environment. Apparel manufacturer's characteristics included product line and the number of employees. For this study, the questionnaires were administered to 215 apparel manufacturers in seoul and Kyung-gi region from Feb. to Mar. 1998. Employing a sample of 201, data were analyzed by factor analysis, descriptive statistics, cluster analysis, cluster analysis, discriminant Analysis, and multivariate analysis of variance. The following are the results of this study : 1. The production environment was identified as three types such as complexity of product environment, uncertainty of demand/supply environment and uncertainty of worker environment. 2. Based on three types of the production environment, apparel manufacturers were classified into stable group, uncertain group and complicated group. 3. With respect to product line, men's wear manufacturers were lied the most high complexity of product environment, casual wear and knit wear were lied the most frequently uncertainty of worker environment. With respect to the number employees, apparel manufacturers comprising 50∼99 employees were lied the most high complexity of product environment, while those comprising 100∼299 employees the most high demand/supply environment.

  • PDF

Strategic Pricing Framework for Closed Loop Supply Chain with Remanufacturing Process using Nonlinear Fuzzy Function (재 제조 프로세스를 가진 순환 형 SCM에서의 비선형 퍼지 함수 기반 가격 정책 프레임웍)

  • Kim, Jinbae;Kim, Taesung;Lee, Hyunsoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.29-37
    • /
    • 2017
  • This papers focuses on remanufacturing processes in a closed loop supply chain. The remanufacturing processes is considered as one of the effective strategies for enterprises' sustainability. For this reason, a lot of companies have attempted to apply remanufacturing related methods to their manufacturing processes. While many research studies focused on the return rate for remanufacturing parts as a control parameter, the relationship with demand certainties has been studied less comparatively. This paper considers a closed loop supply chain environment with remanufacturing processes, where highly fluctuating demands are embedded. While other research studies capture uncertainties using probability theories, highly fluctuating demands are modeled using a fuzzy logic based ambiguity based modeling framework. The previous studies on the remanufacturing have been limited in solving the actual supply chain management situation and issues by analyzing the various situations and variables constituting the supply chain model in a linear relationship. In order to overcome these limitations, this papers considers that the relationship between price and demand is nonlinear. In order to interpret the relationship between demand and price, a new price elasticity of demand is modeled using a fuzzy based nonlinear function and analyzed. This papers contributes to setup and to provide an effective price strategy reflecting highly demand uncertainties in the closed loop supply chain management with remanufacturing processes. Also, this papers present various procedures and analytical methods for constructing accurate parameter and membership functions that deal with extended uncertainty through fuzzy logic system based modeling rather than existing probability distribution based uncertainty modeling.

Mean-Variance Analysis for Optimal Operation and Supply Chain Coordination in a Green Supply Chain

  • Yamaguchi, Shin;Goto, Hirofumi;Kusukawa, Etsuko
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.22-43
    • /
    • 2017
  • It is urgently-needed to construct a green supply chain (GSC) from collection of used products through recycling of them to sales of products using the recycled parts. Besides, it is necessary to consider the uncertainty in product demand as a risk in a GSC. This study proposes the optimal operations for a GSC with a retailer and a manufacturer. A retailer pays an incentive for collection of used products from customers and sells a single type of products in a market. A manufacturer produces the products ordered by the retailer, using recyclable parts with acceptable quality and compensates the collection cost of used products as to the recycled parts. This paper discusses the following risk attitudes: risk-neutral attitude, risk-averse attitude, and risk-prone attitude. Using mean-variance analysis, the optimal decisions for product order quantity, collection incentive, and lower limit of quality level, in the decentralized GSC (DGSC) and the integrated GSC (IGSC) are made. DGSC optimizes the utility function of each member. IGSC does that of the whole system. The analysis numerically investigates how (i) risk attitude and (ii) quality of recyclable parts affect the optimal operations. Supply chain coordination between GSC members to shift IGSC from DGSC is discussed.

Efficient Supplier Selection with Uncertainty Using Monte Carlo DEA (몬테카를로 DEA를 이용한 불확실성을 고려한 효율적 공급자 선정)

  • Ha, Chunghun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.1
    • /
    • pp.83-89
    • /
    • 2015
  • Selection of efficient supplier is a very important process as risk or uncertainty of a supply chain and its environment are increasing. Previous deterministic DEA and probabilistic DEAs are very limited to handle various types of risk and uncertainty. In this paper, I propose an improved probabilistic DEA which consists of two steps; Monte Carlo simulation and statistical decision making. The simulation results show that the proposed method is proper to distinguish supplier's performance and provide statistical decision background.

Implementation and Performance Evaluation of a Firm's Green Supply Chain Management under Uncertainty

  • Lin, Yuanhsu;Tseng, Ming-Lang;Chiu, Anthony S.F.;Wang, Ray
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.1
    • /
    • pp.15-28
    • /
    • 2014
  • Evaluation of the implementation and performance of a firm's green supply chain management (GSCM) is an ongoing process. Balanced scorecard is a multi-criteria evaluation concept that highlights implementation and performance measures. The literature on the framework is abundant literature but scarce on how to build a hierarchical framework under uncertainty with dependence relations. Hence, this study proposes a hybrid approach, which includes applied interpretive structural modeling to build a hierarchical structure and uses the analytic network process to analyze the dependence relations. Additionally, this study applies the fuzzy set theory to determine linguistic preferences. Twenty dependence criteria are evaluated for a GSCM implemented firm in Taiwan. The result shows that the financial aspect and life cycle assessment are the most important performance and weighted criteria.

A Development of SCM Model in Chemical Industry Including Batch Mode Operations (회분식 공정이 포함된 화학산업에서의 공급사슬 관리 모델 개발)

  • Park, Jeung Min;Ha, Jin-Kuk;Lee, Euy Soo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.316-329
    • /
    • 2008
  • Recently the increased attention pays on the processing of multiple, relatively low quantity, high value-added products resulted in adoption of batch process in the chemical process industry such as pharmaceuticals, polymers, bio-chemicals and foods. As there are more possibilities of the improvement of operations in batch process than continuous processes, a lot of effort has been made to enhance the productivity and operability of batch processes. But the chemical process industry faces a range of uncertainties factors such as demands for products, prices of product, lead time for the supply of raw materials and in the production, and the distribution of product. And global competition has made it imperative for the process industries to manage their supply chains optimally. Supply chain management aims to integrate plants with their supplier and customers so that they can be managed as a single entity and coordinate all input/output flows (of materials, information) so that products are produced and distributed in the right quantities, to the right locations, and at the right time.The objective of this study is to solve the purchase, distribution, production planning and scheduling problem, which minimizes the total costs of production, inventory, and transportation under uncertainty. And development of SCM model in chemical industry including batch mode operations. Through that, the enterprise can respond to uncertainty. Also integrated process optimal planning and scheduling model for manufacturing supply chain. The result shows that, the advantage of supply chain integration are quality matters seen by customers and suppliers, order schedules, flexibility, cost reduction, and increase in sales and profits. Also, an integration of supply chain (production and distribution system) generates significant savings by trading off the costs associated with the whole, rather than minimizing supply chain costs separately.

Optimal Operation for Green Supply Chain Considering Demand Information, Collection Incentive and Quality of Recycling Parts

  • Watanabe, Takeshi;Kusukawa, Etsuko
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.2
    • /
    • pp.129-147
    • /
    • 2014
  • This study proposes an optimal operational policy for a green supply chain (GSC) where a retailer pays an incentive for collection of used products from customers and determines the optimal order quantity of a single product under uncertainty in product demand. A manufacturer produces the optimal order quantity of product using recyclable parts with acceptable quality levels and covers a part of the retailer's incentive from the recycled parts. Here, two scenarios for the product demand are assumed as: the distribution of product demand is known, and only both mean and variance are known. This paper develops mathematical models to find how order quantity, collection incentive of used products and lower limit of quality level for recycling affect the expected profits of each member and the whole supply chain under both a decentralized GSC (DGSC) and an integrated GSC (IGSC). The analysis numerically compares the results under DGSC with those under IGSC for each scenario of product demand. Also, the effect of the quality of the recyclable parts on the optimal decisions is shown. Moreover, supply chain coordination to shift the optimal decisions of IGSC is discussed based on: I) profit ratio, II) Nash bargaining solution, and III) Combination of (I) and (II).