• 제목/요약/키워드: superior chemical and mechanical strength

검색결과 47건 처리시간 0.026초

Development of the Environmental Friendly Materials Using the Waste Tires and the Waste Plastics

  • Choon Han;Kim, Hwan;Ahn, Ji-Whan;Eun, Hee-Tai
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.236-239
    • /
    • 2001
  • In this study, the compound materials of GRT/plastics (HDPE, LLDPE, LDPE, PP and PS) were developed. Their tensile strength, strain at yield and flexural modulus according to the change in CRT content were measured. And, the physical properties of the compound materials that the GRT content was changed in the waste vinyl HDPE and pure HDPE were measured, compared and analyzed. If tile GRT is added to PE plastics, the physical properties were superior to those of PP and PS, and in the case of HDPE, the waste vinyl HDPE had superior physical properties by the GRT content to the pure HDPE.

  • PDF

세라믹스의 제거가공 기술 동향 (Review of Technology Trends for Ceramics Removal-Machining)

  • 곽재섭;곽태수
    • 한국정밀공학회지
    • /
    • 제30권12호
    • /
    • pp.1227-1235
    • /
    • 2013
  • Ceramic materials are classified by oxide, nitride and carbide material and have high brittleness, strength and hardness. Ceramic materials are strong in compression but weak in shearing and tension. This review paper has focused on technology trends and mechanism analysis of ceramics removal machining. The ceramic materials have superior mechanical, physical and chemical properties, but it is very hard to machining and the use of ceramics has been limited because of high strength and brittleness. In this paper, technology trends of ceramic removal-machining was introduced for types of machining technology, abrasive machining, cutting process, laser machining and so on.

Electrical Properties of the Epoxy Nano-composites according to Additive

  • Shin, Jong-Yeol;Park, Hee-Doo;Choi, Kwang-Jin;Lee, Kang-Won;Lee, Jong-Yong;Hong, Jin-Woong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권3호
    • /
    • pp.97-101
    • /
    • 2009
  • The use of a filler material in epoxy composite materials is an essential condition for reducing the unit cost of production and reinforcing mechanical strength. However, the dielectric strength of insulators decreases rapidly due to interactions between the epoxy resin and filler particles. In contrast to existing composite materials, nano-composite materials have superior dielectric strength, mechanical strength, and enduring chemical properties due to an increase in the bond strength of the polymer and nano material, It is reported that nano-fillers provide new characteristics different from the properties of the polymer material. This study is to improve the insulation capability of epoxy resins used in the insulation of a power transformer apparatus and many electronic devices mold. To accomplish this, the additional amount of nano-$SiO_2$ to epoxy resin was changed and the epoxy/$SiO_2$ nano composite materials were made, and the fundamental electrical properties were investigated using a physical properties and an analysis breakdown test. Using allowable breakdown probability, the optimum breakdown strength for designing an electrical apparatus was determined. The results found that the electrical characteristics of the nano-$SiO_2$ content specimens were superior to the virgin specimens. The 0.4 wt% specimens showed the highest electrical properties among the specimens examined with an allowable breakdown probability of 20 %, which indicates stable breakdown strength in insulating machinery design.

고온영역에서의 폴리머시멘트모르타르의 역학적 특성연구 (A study on the mechanical properties of the polymer cement mortar in a high temperature region)

  • 윤웅기;서동구;권영진;김형준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.113-114
    • /
    • 2014
  • Though polymer cement mortar is widely used to repair or reinforce concrete as it has superior adhesion, dense internal structure, chemical resistance, and workability in comparison to those of general cement mortar, studies on its behaviors in high temperature environment such as fire is urgently required. Accordingly, in this experiment, the degrees of reduction in the compressive strength at different temperatures was grasped applying ISO834 Heating Curve, and the effect of polymer content and type on compressive strength could be determined. As a result of this experiment, it is found that polymer type and content have a big effect on reduction of compressive strength in high temperature range, and not only the dynamic characteristics but also the combustion characteristics in high temperature range are required to be studied considering occurrence of a fire in the future.

  • PDF

탄소섬유판(CFRP Strip)으로 보강된 철근콘크리트 부재의 전단거동 (Shear Behavior of Reinforced Concrete Beams Strengthened with CFRP Strips)

  • 임동환;박성환;김용일
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.161-164
    • /
    • 2006
  • Carbon fiber reinforced polymer(CFRP) strips have superior mechanical and chemical properties in comparison with conventional materials. The purpose of this study is to investigate the mechanical shear behavior of concrete structures strengthened by CFRP strips A total of 15 concrete members were made and tested. Shear span to depth ratio(a/d) and the spacing of CFRP stripswere selected as major test variables. From test results, it isshown that shear strengthening with CFRP strips can increase the first shear strength and ultimate shear strength of concrete members significantly. And the brittle shear failure mode can be changed to a ductile failure mode by CFRP strips.

  • PDF

혼합 시멘트 모르타르의 내구특성 (Durability Characteristics of Blended Cement Mortars)

  • 원종필;이찬민;박찬기
    • 한국농공학회지
    • /
    • 제45권3호
    • /
    • pp.41-49
    • /
    • 2003
  • In this study, durability performance of blended cement mortars is evaluated when various mineral admixtures are used with the cement. A comprehensive evaluation of the effects of mineral admixtures on the mortar performance was made. The properties of fresh and hardened blended mortars investigated include slump flow and compressive strength. The durability characteristics of cement materials incorporating the mineral admixtures under various physical and chemical causes of deterioration was investigated. The laboratory test results indicate that mechanical and durability properties of blended cement mortars have superior performance rather than ordinary cement mortars.

유리섬유강화 플라스틱의 LNG 저장탱크용 합판 대체 가능성 평가 (Estimation for Adaptability of Fiber Reinforced Plastic Composite for LNG Storage Tank)

  • 김상범;조정미;조세현;권영수
    • 한국가스학회지
    • /
    • 제7권1호
    • /
    • pp.28-32
    • /
    • 2003
  • 대체 facing material 소재로 유력시되는 FRP를 사용하여 facing material이 갖추어야할 압축, 인장 등 기계적 물성과, vapor barrier도, 화학적 안전성 등을 조사한 결과 모든 면에서 기존의 plywood보다 우수한 성질을 나타냄을 밝혔다. 본 연구의 결과로서 대체 facing material로 FRP를 사용할 경우 LNG 저장 탱크의 안전성이 향상되고 높은 vapor barrier기능으로 인해 탱크의 성능이 향상되는 등 다양한 장점을 나타냄을 알 수 있게 되었다. 따라서 본 연구의 결과는 LNG 저장 탱크의 성능을 개선하는데 기여하며, LNG 저장 탱크용 합판의 대체연구에 적극적으로 활용될 수 있을 것으로 사료된다.

  • PDF

Mechanical and durability properties of self-compacting concrete with blended binders

  • Xie, T.Y.;Elchalakani, M.;Mohamed Ali, M.S.;Dong, M.H.;Karrech, A.;Li, G.
    • Computers and Concrete
    • /
    • 제22권4호
    • /
    • pp.407-417
    • /
    • 2018
  • Over the past three decades, self-compacting concrete (SCC), which is characterized by its superior rheological properties, has been gradually used in construction industry. It is now recognized that the application of SCC using supplementary cementitious materials (SCM) is highly attractive and promising technology reducing the environmental impact of the construction industry and reducing the higher materials costs. This paper presents an experimental study that investigated the mechanical and durability properties of SCCs manufactured with blended binders including fly ash, slag, and micro-silica. A total of 8 batches of SCCs were manufactured. As series of tests were conducted to establish the rheological properties, compressive strength, and durability properties including the water absorption, water permeability, rapid chloride permeability and initial surface absorption of the SCCs. The influences of the SCC strength grade, blended types and content on the properties of the SCCs are investigated. Unified reactive indices are proposed based on the mix proportion and the chemical composition of the corresponding binders are used to assess the compressive strength and strength development of the SCCs. The results also indicate the differences in the underlying mechanisms to drive the durability properties of the SCC at the different strength grades.

Fuzzy inference systems based prediction of engineering properties of two-stage concrete

  • Najjar, Manal F.;Nehdi, Moncef L.;Azabi, Tareq M.;Soliman, Ahmed M.
    • Computers and Concrete
    • /
    • 제19권2호
    • /
    • pp.133-142
    • /
    • 2017
  • Two-stage concrete (TSC), also known as pre-placed aggregate concrete, is characterized by its unique placement technique, whereby the coarse aggregate is first placed in the formwork, then injected with a special grout. Despite its superior sustainability and technical features, TSC has remained a basic concrete technology without much use of modern chemical admixtures, new binders, fiber reinforcement or other emerging additions. In the present study, an experimental database for TSC was built. Different types of cementitious binders (single, binary, and ternary) comprising ordinary portland cement, fly ash, silica fume, and metakaolin were used to produce the various TSC mixtures. Different dosages of steel fibres having different lengths were also incorporated to enhance the mechanical properties of TSC. The database thus created was used to develop fuzzy logic models as predictive tools for the grout flowability and mechanical properties of TSC mixtures. The performance of the developed models was evaluated using statistical parameters and error analyses. The results indicate that the fuzzy logic models thus developed can be powerful tools for predicting the TSC grout flowability and mechanical properties and a useful aid for the design of TSC mixtures.

외부 프리스트레싱과 탄소섬유판을 결합한 콘크리트 구조물 보강 (Strengthening of Concrete Structures with External Post-Tensioning and CFRP Strips)

  • 임동환;박성환;김용일
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.165-168
    • /
    • 2006
  • Carbon fiber reinforced polymer(CFRP) have superior mechanical and chemical properties in comparison with conventional materials. And post-tensioning method has been used for structural reinforcement of RC structures due to easy installation and good effect of resisting capacity of structures. But the higher cost of CFRP and the loss of prestressing force with time are considered the major problems to use it. In this study, CFRP Strips and external post tensioning for rehabilitation of old concrete structures were adapted and optimal combination of these methods is considered. A total of 17 concrete members were made and tested. The types and numbers of CFRP strips and post-tensioning types were selected as major test variables. From test results, it is shown that the concrete members that post tensioned and bonded CFRP strips has a pronounced effect on the strength and deformational behavior. This present study indicates that external temporally post tensioning can reduce the amount of CFRP strips required and the combination of temporally post tensioning and CFRP strips may meet the strength and ductility requirements of old structures.

  • PDF