• Title/Summary/Keyword: superfamily

Search Result 283, Processing Time 0.018 seconds

Germ Cell Differentiations during Spermatogenesis and Ultrastructural Characteristics of Mature Sperms in Male Protothaca (Notochione) jedoensis (Bivalvia: Veneridae) (수컷 살조개, Protothaca (Notochione) jedoensis (Bivalvia: Veneridae)의 정자형성과정 중 생식세포 분화와 성숙정자의 미세구조적 특징)

  • Kim, Jin-Hee;Park, Young-Jae;Lee, Ki-Young;Choi, Moon-Sul;Seo, Won-Jae;Chung, Ee-Yung
    • Development and Reproduction
    • /
    • v.14 no.4
    • /
    • pp.269-279
    • /
    • 2010
  • Some characteristics of germ cell differntiations and the function of accessory cells during spermatogenesis, and mature sperm ultrastructure in male Protothaca (N.) jedoensis were investigated by transmission electron microscope observations. The morphology of the spermatozoa of this species has a primitive type and is similar to those of other species in the subclass Heterodonta. Accessory cells, which are connected to adjacent germ cells, are involved in the supplying of the nutrients for germ cell development. The morphologies of the sperm nucleus and the acrosome of this species are the cylindrical type and cap shape, respectively. Spermatozoa are approximately $46{\sim}50{\mu}m$ in length including a long sperm nucleus (about $2.44{\mu}m$ in length), an acrosome (about $0.45{\mu}m$ in length), and tail flagellum (about $42{\sim}46{\mu}m$). The axoneme of the sperm tail shows a 9+2 structure. As some characteristics of the acrosomal vesicle structures, the basal and lateral parts of basal rings show electron opaque part (region), while the anterior apex part of the acrosomal vesicle shows electron lucent part (region). These characteristics of the acrosomal vesicle were found in the family Veneridae and other several families in the subclass Heterodonta. These common characteristics of the acrosomal vesicle in the subclass Heterodonta can be used for phylogenetic and systematic analysis as a taxonomic key or a significant tool. The number of mitochondria in the midpiece of the sperm of this species are four, as one of common characteristics appear in most species in the family Veneridae and other families in the subclass Heterodonta. However, exceptionally, only three species in Veneridae of the subclass Heterodonta contain 5 mitochondria. The number of mitochondria in the sperm midpiece can be used for the taxonomic analysis of the family or superfamily levels as a systematic key or an important tool.

Growth Effect of Oncorhychus masou by Recombinant Myostatin Prodomain Proteins Derived from Fish (어류 유래 마이오스타틴 프로도메인 단백질에 의한 시마연어(Oncorhychus masou) 성장효과)

  • Kim, Jeong-Hwan;Lee, Sang-Beum;Cho, Mi-Jin;Ahn, Ji-Young;Lee, Suk-Keun;Hong, Sung-Youl;Seong, Ki-Baik;Jin, Hyung-Joo
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1149-1155
    • /
    • 2011
  • Myostatin (MSTN) belongs to the transforming growth factor-${\beta}$ superfamily or growth and differentiation factor 8 (GDF-8), and functions as a negative regulator of skeletal muscle development and growth. Previous studies in mammals have suggested that myostatin knock-out increased muscle mass and decreased fat content compared to those of the wide type. Recently, several studies on myostatin have beenconducted on the block myostatin signal pathway with myostatin antagonists and the MSTN regulation with RNAi to control myostatin function. This study was performed to analyze growth and muscle alteration of Oncorhychus masou by treatment with recombinant myostatin prodomains derived from fish. We designed myostatin prodomains derived from P. olivaceus (pMALc2x-poMSTNpro) and S. schlegeli (pMALc2x-sMSTNpro) in a pMALc2x expression vector, and then purified the recombinant proteins using affinity chromatography. The purified recombinant proteins were treated in O. masou through an immersion method. Recombinant protein treated groups did not show a significant difference in weight, protein, or lipid composition compared to the control. However, there was a difference in the average number and area for histological analyses in the muscle fiber. At twelve and twenty-two weeks from the initial treatment, there were differences in averagefiber number and area between the 0.05 mg/l treated-group and the control, but the numbers were similar to those of the control during the same time period. At twelve weeks, however, 0.2 mg/l treated-group had an increase in average fiber number and decrease in average fiber area compared to the control. At twenty-two weeks, the pMALc2x-sMSTNpro 0.2 mg/l treated-group was induced and showed a decrease in average fiber number and increase in average fiber area. The results between twelve and twenty-two weeks showed that the fiber numbers had decreased, whereas average fiberarea had increased due to sMSTNpro. It is understood that the sMSTNpro induced only hyperplasia at twelve weeks, after which it induced hypertrophy. Recombinant myostatin prodomains derived from fish may induce hyperplasia and hypertrophy in O. masou depending upon the time that has elapsed.

Effects of Climatic Factors on the Nationwide Distribution of Wild Aculeata (Insecta: Hymenoptera) (전국 야생 벌목 분포에 대한 기후요인 영향 연구)

  • Yu, Dong-Su;Kwon, Oh-Chang;Shin, Man-Seok;Kim, Jung-Kyu;Lee, Sang-Hun
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.3
    • /
    • pp.303-317
    • /
    • 2022
  • Climate change caused by increased greenhouse gas emissions can alter the natural ecosystem, including the pollination ecosystem and agricultural ecology, which are ecological interactions between potted insects and plants. Many studies have reported that populations of wild bees, including bees and wasps (BW), which are the key pollinators, have gradually declined due to climate change, leading to adverse impacts on overall biodiversity, ultimately with agribusinesses and the life cycle of flowering plants. Therefore, we could infer that the rising temperature in Korean Peninsula (South Korea) due to global warming has led to climate change and influenced the wild bee's ecosystem. In this study, we surveyed the distributional pattern of BW (Superfamily: Apoidea, Vespoidea, and Chrysidoidea) at 51 sites from 2017 (37 sites) to 2018 (14 sites) to examine the effects of climatic factors on the nationwide distribution of BW in South Korea. Previous literature has confirmed that their distribution according to forest climate zones is significantly correlated with mean and accumulative temperatures. Based on the result, we predicted the effects of future climate changes on the BW distribution that appeared throughout South Korea and the species that appeared in specific climate zones using Shared Socioeconomic Pathways (SSPs). The distributions of wild BW predicted by the SSP scenarios 2-4.5 and 5-8.5 according to the BIOMOD species distribution model revealed that common and endemic species will shift northward from the current habitat distribution by 2050 and 2100, respectively. Our study implies that climate change and its detrimental effect on the ecosystem is ongoing as the BW distribution in South Korea can change, causing the change in the ecosystem in the Korean Peninsula. Therefore, immediate efforts to mitigate greenhouse gas emissions are warranted. We hope the findings of this study can inspire further research on the effects of climate change on pollination services and serve as the reference for making agricultural policy and BW conservation strategy