• 제목/요약/키워드: superelevation

검색결과 42건 처리시간 0.019초

Unsteady RANS computations of turbulent flow in a high-amplitude meandering channel (고진폭 만곡수로에서 난류흐름의 비정상 RANS 수치모의)

  • Lee, Seungkyu;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • 제50권2호
    • /
    • pp.89-97
    • /
    • 2017
  • Turbulent flow structure in the high amplitude meandering channel is complex due to secondary recirculation with helicoidal motions and shear layers formed by flow separation from the curved sidewall. In this work, the secondary flow and the superelevation of the water surface produced in the high-amplitude Kinoshita channel are reproduced by the unsteady Reynolds-averaged Navier-Stokes (RANS) computations using the VOF technique for resolving the variation of water surface elevation and three statistical turbulence models ($k-{\varepsilon}$, RNG $k-{\varepsilon}$, $k-{\omega}$ SST). The numerical results computed by a second-order accurate finite volume method are compared with an existing experimental measurement. Among applied turbulence models, $k-{\omega}$ SST model relatively well predicts overall distribution of the secondary recirculation in the Kinoshita channel, while all three models yield similar prediction of water superelevation transverse slope. The secondary recirculation driven by the radial acceleration in the upstream bend affects the flow structure in the downstream bend, which yields a pair of counter-rotating vortices at the bend apex. This complex flow pattern is reasonably well reproduced by the $k-{\omega}$ SST model. Both $k-{\varepsilon}$ based models fail to predict the clockwise-rotating vortex between a pair of counter-rotating vortices which was observed in the experiment. Regardless of applied turbulence models, the present computations using the VOF method appear to well reproduce the superelevation of water surface through the meandering channel.

A Study on Turning Characteristics of Vehicle Based on Parameters of Curved Road (매개변수에 따른 커브 길에서 차량 선회특성에 관한 연구)

  • Yang, Sung-Hoon;Lee, Hak-Yong;Yoon, Jun-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.25-32
    • /
    • 2013
  • Entry speed of the vehicle and lateral acceleration acting on the vehicle, roll-angle associated with the overthrow, and then the structure of the road, the friction of road surface are important factors in turning on the curved road. In this study, we analyzed the state change of the vehicle causing entry speed of the vehicle and superelevation of the road, the friction coefficient by using a PC-crash Program for traffic accident reconstruction. As a result, when vehicle is turning the curved road, we could ascertain that the structure of the road and state of the road surface are a major factor about the set up of limited speed.

A Method of Compounding Application of Longitudinal Grade and Superelevation on Left Curved Section in Arterial for Preventing Hydroplaning (간선도로 좌곡선부 전후구간 수막현상 방지를 위한 종·횡단경사 조합 적용방안)

  • Jung, Ji Hwan;Oh, Heung Un
    • International Journal of Highway Engineering
    • /
    • 제17권1호
    • /
    • pp.105-118
    • /
    • 2015
  • PURPOSES : This study aims to evaluate the road safety of the super-elevation transition section of a left turn curve and suggest the minimum longitudinal grade of a super-elevation transition section to be used before and after a left curved section. METHODS : We evaluated the road condition by means of the safety-criterion-evaluation method involving side friction factors, and then solve the problem by introducing the minimum longitudinal grade criterion based on conditions described in the hydraulics literature. RESULTS : It was calculated that when a road satisfies hydroplaning conditions, the difference between side friction assumed and side friction demanded is less than -0.04. In this case, the safety criterion for the condition is unsatisfied. Conversely, when a road is in a normal state under either wet or dry conditions, it was calculated that the difference between side friction assumed and side friction demanded is more than 0.01. Thus, the safety criterion for this condition is found to be satisfied. After adjusting the minimum longitudinal grade applied to a super-elevation transition section, the hydroplaning condition can be eliminated and the safety criterion can be met for all sections. CONCLUSIONS : It is suggested that a minimum longitudinal grade should be provided on super-elevation transition sections in order to prevent hydroplaning.

Extraction of Highway′s Superelevation Using GPS Real Time Kinematic Surveying (GPS 실시간 동적측위법을 이용한 도로 편경사 추출)

  • 서동주;장호식;이종출
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제20권2호
    • /
    • pp.183-190
    • /
    • 2002
  • This study is about the extraction of highway's superelevation using real time kinematic surveying among of GPS surveying methods which is economic method to construct data base in the side of highway maintain management. Using the developed vehicle, center line and shoulder of highway are measured and enough precision is obtained after analyzing the result. The result is show that 1.3 cm to 2.0 cm error in the clothed and about 0.8 cm to 1.2 cm error in the circular curve. Those errors are proved error to lane making during construction. This study is expected to become efficient method for extraction of highway alignment elements in the Mobile Mapping System.

Development of Estimation of Curve Radii of Road Considering Design Consistency (설계일관성을 고려한 도로 곡선반경 산정에 관한 연구)

  • Park, Je-Jin;Lee, Sang-Ha;Park, Kwang-Won;Ha, Tae-Jun
    • International Journal of Highway Engineering
    • /
    • 제10권2호
    • /
    • pp.125-133
    • /
    • 2008
  • Achieving consistent geometric design is an important goal in highway design to ensure obtaining safe, economical and smooth traffic operation. Most evaluation of consistency is based on 'speed change' in speed profile. According to literature, the speed depends on geometric elements, speed on tangent section prior to a curve, and background around roads. Especially, the radius is the most main element mentioned in various literature. Therefore, this paper shows two ways of calculating horizontal radius on real road, that is, three-dimensional road. First of all, the radius of horizontal curve is calculated based on physical method. The calculated radius contains not only superelevation but also longitudinal grade while the current minimum radius is calculated by considering superelevation and side friction according to the point-mass equation. Secondly, the problem of composed curves with distorted appearance by overlaying sag or crest vertical alignment has been known. To quantify the extent of distortion effects, the method of calculation of real seen so called 'Perspective Radius' is developed. The paper presents the perspective radius and recommended perspective radius.

  • PDF

A Study for Measuring of Cross Slope Using Instrument Vehicle with Multiple Sensors (센서를 장착한 차량을 이용한 도로 횡단경사 측정에 관한 연구)

  • Yun Duk-Geun;Jeong Dong-Hoon;Sung Jung-Gon;Lee Sang-Hwa
    • International Journal of Highway Engineering
    • /
    • 제8권2호
    • /
    • pp.105-116
    • /
    • 2006
  • This research introduces the method to measure cross-slope using Road Safety Survey and Analysis Vehicle(RoSSAV) with multiple sensors. Cross-slope is an important element like horizontal alignment and vertical alignment in evaluating safety of the roads. In many cases, cross-slope is different from drawings due to frequent overlays. It is extremely difficult to measure cross slope at the roads which has huge traffic volume. Therefore, the algorithm, which can be used when driving the RoSSAV with CPS/INS and Laser Scanner sensors was developed for measuring the cross-slop. Also, in order to examine the algorithm, the superelevation was measured by Laser Scanner and GPS/INS system during travelling and the result was verified by statistical verification.

  • PDF

An Analysis of Effectiveness of Geometric Improvement on Horizontal Curves in Two-Lane Highway (2차로도로 평면선형 구간의 기하구조 개선대책별 효과평가)

  • Shim, Kywan-Bho;Choi, Jai-Sung
    • International Journal of Highway Engineering
    • /
    • 제10권3호
    • /
    • pp.33-46
    • /
    • 2008
  • A two-lane highway has a high rate of head-on collisions, sideswipe collisions, crashes with an fixed object. This study was to analyze the weakness of a cross section and a horizontal curve in a two-lane highway and find countermeasures to improve the traffic operations and safety. This study evaluated the effectiveness of widening, curve flattening and superelevation, verified it with a case study and assessed the economical efficiency. This study selected the difference between tangent section operating speeds and curve section operating speeds as an evaluation index of horizontal curve section in a two-lane highway. The results indicated that curve flattening is the best way to improve the traffic safety in a two-lane highway. This study has implication that it provides the quantitative effects of curve flattening. Also directions for future study were discussed.

  • PDF