• 제목/요약/키워드: supercritical water

Search Result 248, Processing Time 0.024 seconds

Effect of Solvents as Subcritical and Supercritical Fluid on Decomposition and Extraction of Used Automotive Tire (아임계와 초임계유체로써 폐타이어 분해와 추출에 미치는 용매의 영향)

  • Kang, W.S.;Na, D.Y.;Kim, I.S.;Han, S.B.;Park, P.W.
    • Elastomers and Composites
    • /
    • v.34 no.3
    • /
    • pp.239-246
    • /
    • 1999
  • Side wall samples from a used automotive tire were subjected to subcritical and supercritical decomposition and extraction with three solvents, water, 28% ammonia solution and ammonia. For 6mm cube samples the rate of supercritical extraction with water followed a first-order kinetics with an activation energy of 140 kJ/mol. Solvent power of 28% ammonia so lotion at supercritical condition was found to be higher than supercritical water at initial extraction as pressure decreased. These phenomena were considered to be an effect of ammonia involved in water.

  • PDF

Decomposition of PVC and Ion Exchange Resin in Supercritical Water

  • Kim Jung-Sung;Lee Sang-Hwan;Park Yoon-Yul;Yasuyo Hoshikawa;Hiroshi Tomiyasu
    • Journal of Environmental Science International
    • /
    • v.14 no.10
    • /
    • pp.919-928
    • /
    • 2005
  • This study introduces the development of new supercritical water oxidation(SCW)(multiple step oxidation) to destruct recalcitrant organic substances totally and safely by using sodium nitrate as an oxidant. This method has solved the problems of conventional SCW, such as precipitation of salt due to lowered permittivity, pressure increase following rapid rise of reaction temperature, and corrosion of reactor due to the generation of strong acid. Destruction condition and rate in the supercritical water were examined using Polyvinyl Chloride(PVC) and ion exchange resins as organic substances. The experiment was carried out at $450^{\circ}C$ for 30min, which is relatively lower than the temperature for supercritical water oxidation $(600-650^{\circ}C)$. The decomposition rates of various incombustible organic substances were very high [PVC$(87.5\%)$, Anion exchange resin$(98.6\%)$, Cationexchange resin$(98.0\%)$]. It was observed that hetero atoms existed in organic compounds and chlorine was neutralized by sodium (salt formation). However, relatively large amount of sodium nitrate (4 equivalent) was required to raise the decomposition ratio. For complete oxidation of PCB was intended, the amount of oxidizer was an important parameter.

CORROSION BEHAVIOR OF AUSTENITIC AND FERRITIC STEELS IN SUPERCRITICAL WATER

  • Luo, Xin;Tang, Rui;Long, Chongsheng;Miao, Zhi;Peng, Qian;Li, Cong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.147-154
    • /
    • 2008
  • The general corrosion behavior of austenitic and ferritic steels(316L, 304, N controlled 304L, and 410) in supercritical water is investigated in this paper. After exposure to deaerated supercritical water at $480^{\circ}C$/25 MPa for up to 500 h, the four steels studied were characterized using gravimetry, scanning electron microscopy/energy dispersive X-ray spectroscopy(SEM/EDS), X-ray photoelectron spectroscopy(XPS), and X-ray diffraction(XRD). The results show that the 316L steel with a higher Cr and Ni content has the best corrosion-resistance performance among the steels tested. In addition to the oxide layer mixed with $Fe_{3}O_{4}$ and $(Fe,Cr)_{3}O_{4}$ that formed on all the samples, a $Fe_{3}O_{4}$ loose outer layer was observed on the 410 steel. The corrosion mechanism of stainless steels in supercritical water is discussed based on the above results.

SUPERCRITICAL WATER LOOP DESIGN FOR CORROSION AND WATER CHEMISTRY TESTS UNDER IRRADIATION

  • Ruzickova, Mariana;Hajek, Petr;Smida, Stepan;Vsolak, Rudolf;Petr, Jan;Kysela, Jan
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.127-132
    • /
    • 2008
  • An experimental loop operating with water at supercritical conditions(25MPa, $600^{\circ}C$ in the test section) is designed for operation in the research reactor LVR-15 in UJV Rez, Czech Republic. The loop should serve as an experimental facility for corrosion tests of materials for in-core as well as out-of-core structures, for testing and optimization of suitable water chemistry for a future HPLWR and for studies of radiolysis of water at supercritical conditions, which remains the domain where very few experimental data are available. At present, final necessary calculations(thermalhydraulic, neutronic, strength) are being performed on the irradiation channel, which is the most challenging part of the loop. The concept of the primary and auxiliary circuits has been completed. The design of the loop shall be finished in the course of the year 2007 to start the construction, out-of-pile testing to verify proper functioning of all systems and as such to be ready for in-pile tests by the end of the HPLWR Phase 2 European project by the end of 2009.

Direct Numerical Simulation of Turbulent Heat Transfer to Water at Supercritical Pressure Flowing in Vertical Pipes (수직원형관내 초임계압 물의 난류 열전달에 관한 직접수치모사)

  • Lee, Sang-Hoon;Bae, Joong-Hun;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2471-2476
    • /
    • 2008
  • Turbulent flow and heat transfer to water at supercritical pressure flowing in vertical pipes is investigated using direct numerical simulation (DNS). A conservative space-time discretization scheme for variable-density flows at low Mach numbers is adopted in the present study to treat steep variations of fluid properties at supercritical pressure just above the thermodynamic critical point. The fluid properties at these conditions are obtained using PROPATH and used in the form of tables in the simulations. The buoyancy influence induced by strong variation of density across the pseudo-critical temperature proved to play an important role in turbulent flow and heat transfer at supercritical state. Depending on the degree of buoyancy influence, turbulent heat transfer may be enhanced or significantly deteriorated, resulting in local hot spots along the heated surface.

  • PDF

Addition and Measurement of Modifier(Water) in Carbon Dioxide Mobile Phase for Supercritical Fluid Chromatography (초임계 유체 크로마토그래피에서 이동상에 Modifier를 첨가시키는 새로운 방법과 첨가된 Modifier(H2O) 양의 측정방법)

  • Ju Doweon;Pyo Dongjin
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.6
    • /
    • pp.604-611
    • /
    • 1993
  • Supercritical Fluid Chromatography(SFC) has become a technique for solving problems that are difficult by other chromatographic methods. However, the most widely used fluid, is no more polar than hexane. Polar samples which are difficult to be analyzed with pure supercritical C$O_2$ because of their high polarity can be separated by adding polar modifiers to supercritical C$O_2$. In this paper, a new method for monitering the mobile phase composition in modified supercritical fluid chromatography was developed. The amount of water dissolved in supercritical C$O_2$ was measured by amperometric microsensor which is made of thin film of perfluorosulfonate ionomer (PFSI). The amount of water dissolved in supercritical C$O_2$ stayed constant for a much longer time than with a saturator column. With this new mixing device, we could do good separations for insecticides and fungicides which are difficult to separate with pure C$O_2$.

  • PDF

Extraction of Athabasca Oil Sand with Sub- and Supercritical Water (아임계 및 초임계수를 이용한 Athabasca 오일샌드의 추출)

  • Park, Jung Hoon;Son, Sou Hwan;Baek, Il Hyun;Nam, Sung Chan
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.281-286
    • /
    • 2009
  • Bitumen extraction and sulfur removal from Athabasca oil sand were conducted using water in sub- and supercritical condition. Bitumen yield in micro reactor was investigated in the pressure range of 15~30 MPa, the temperature of 360 and $380^{\circ}C$ and water density $0.074{\sim}0.61g/cm^3$ for 0~120 min. Bitumen yield increased with reaction pressure irrespective of temperature and dramatically increased in especially supercritical region due to hydrogen formed from water gas shift reaction. Total amount of gas product decreased with reaction pressure but the portion of sulfur and hydrogen increased a little with increasing pressure to 25 and 30 MPa. It is seen that supercritical condition was favourable to the hydrogen formation and sulfur removal. Bitumen yield and sulfur removal from original oil sand reached a maximum 22% and 40% respectively in supercritical condition(the reaction time of 60 min at $380^{\circ}C$ and 25 or 30 MPa).

RESEARCH ACTIVITIES ON A SUPERCRITICAL PRESSURE WATER REACTOR IN KOREA

  • Bae, Yoon-Yeong;Jang, Jin-Sung;Kim, Hwan-Yeol;Yoon, Han-Young;Kang, Han-Ok;Bae, Kang-Mok
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.273-286
    • /
    • 2007
  • This paper presents the research activities performed to date for the development of a supercritical pressure water-cooled reactor (SCWR) in Korea. The research areas include a conceptual design of an SCWR with an internal flow recirculation, a reactor core conceptual design, a heat transfer test with supercritical $CO_2$, an adaptation of an existing safety analysis code to the supercritical pressure condition, and an evaluation of candidate materials through a corrosion study. Methods to reduce the cladding temperature are introduced from two different perspectives, namely, thermal-hydraulics and core neutronics. Briefly described are the results of an experiment on the heat transfer at a supercritical pressure, an experiment that is essential for the analysis of the subchannels of fuel assemblies and the analysis of a system safety. An existing system code has been adapted to SCWR conditions, and the process of a first-hand validation is presented. Finally, the corrosion test results of the candidate materials for an SCWR are introduced.

Development of New Analytical Method of Vitamins Using Supercritical Fluid (초임계 유체를 이용한 비타민류의 새로운 분석법 개발)

  • Pyo, Dongjin;Park, Dongjin;Kim, Hohyun;Lee, Hakju;Lee, Taejoon
    • Analytical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 1997
  • Supercritical Fluid Chromatography(SFC) has become a technique for solving problems that are difficult to be monitored by other chromatographic methods. However, the most widely used fluid, is no more polar than hexane. Polar samples which are difficult to be analyzed with pure supercritical $CO_2$ because of their high polarity can be separated by adding polar modifiers to supercritical $CO_2$. In this paper, a new method for monitoring the mobile phase composition in modified supercritical fluid chromatography was developed. The amount of water dissolved in supercritical $CO_2$ was measured by amperometric microsensor which is made of thin film of perfluorosulfonate ionomer(PFSI). The amount of water dissolved in supercritical $CO_2$ stayed constant for a much longer time than with a saturator column. With this new mixing device, we could get good resolutions for vitamins which are difficult to separate with pure $CO_2$.

  • PDF

Molecular Dynamics Simulation Study for Hydroxide Ion in Supercritical Water using SPC/E Water Potential

  • Lee, Song Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2925-2930
    • /
    • 2013
  • We present results of molecular dynamics simulations for hydroxide ion in supercritical water of densities 0.22, 0.31, 0.40, 0.48, 0.61, and 0.74 g/cc using the SPC/E water potential with Ewald summation. The limiting molar conductance of $OH^-$ ion at 673 K monotonically increases with decreasing water density. It is also found that the hydration number of water molecules in the first hydration shells around the $OH^-$ ion decreases and the potential energy per hydrated water molecule also decreases in the whole water density region with decreasing water density. Unlike the case in our previous works on LiCl, NaCl, NaBr, and CsBr [Lee at al., Chem. Phys. Lett. 1998, 293, 289-294 and J. Chem. Phys. 2000, 112, 864-869], the number of hydrated water molecules around ions and the potential energy per hydrated water molecule give the same effect to cause a monotonically increasing of the diffusion coefficient with decreasing water density in the whole water density region. The decreasing residence times are consistent with the decreasing potential energy per hydrated water molecule.