• Title/Summary/Keyword: supercritical fluid extract

Search Result 60, Processing Time 0.023 seconds

Red ginseng (Panax ginseng Meyer) oil: A comprehensive review of extraction technologies, chemical composition, health benefits, molecular mechanisms, and safety

  • Truong, Van-Long;Jeong, Woo-Sik
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.214-224
    • /
    • 2022
  • Red ginseng oil (RGO), rather than the conventional aqueous extract of red ginseng, has been receiving much attention due to accumulating evidence of its functional and pharmacological potential. In this review, we describe the key extraction technologies, chemical composition, potential health benefits, and safety of RGO. This review emphasizes the proposed molecular mechanisms by which RGO is involved in various bioactivities. RGO is mainly produced using organic solvents or supercritical fluid extraction, with the choice of method greatly affecting the yield and quality of the end products. RGO contains a high unsaturated fatty acid levels along with considerable amounts of lipophilic components such as phytosterols, tocopherols, and polyacetylenes. The beneficial health properties of RGO include cellular defense, antioxidation, anti-inflammation, anti-apoptosis, chemoprevention, hair growth promotion, and skin health improvement. We propose several molecular mechanisms and signaling pathways that underlie the bioactivity of RGO. In addition, RGO is regarded as safe and nontoxic. Further studies on RGO must focus on a deeper understanding of the underlying molecular mechanisms, composition-functionality relationship, and verification of the bioactivities of RGO in clinical models. This review may provide useful information in the development of RGO-based products in nutraceuticals, functional foods, and functional cosmetics.

Extractions of Surface-Active Substances from Defatted Rapeseed Meal (Brassica napus L.) by Supercritical Carbon Dioxide (초임계 CO2 유체 추출법을 이용한 탈지 유채박 중 표면활성물질 추출의 최적화)

  • Kim, Jeong-Won;Jeong, Yong-Seon;Gil, Na-Young;Lee, Eui-Seok;Lee, Yong-Hwa;Jang, Young-Seok;Lee, Ki-Teak;Hong, Soon-Taek
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.4
    • /
    • pp.831-840
    • /
    • 2013
  • In this study, an attempt is being made to extract surface-active substances from defatted rapeseed cakes by supercritical carbon dioxide fluid. Independent variables for the extraction process, being formulated by D-optimal design, are pressure (150~350 bar), temperature ($33{\sim}65^{\circ}C$ and co-solvent (ethanol, 50~250 g). The dependent variables of the extraction yield, the content of neutral lipids, phospholipids and glycolipids in the extracts were analyzed upon the results through the response surface methodology. As for the extraction yield, it was found to increase with increasing independent variables, among which the co-solvent proved to be a major influencing parameter. Similar trends were found for the content of surface-active substances (i.e, phospholipids and glycolipids) in the extracts, except for the content of neutral lipids. Regression equations were suggested to coincide well with the results from the experiments. Extraction conditions are being optimized to maximize the extraction yields, the content of phospholipids, and glycolipids were 350 bar (pressure), $65^{\circ}C$ (temperature) and 228.55 g (co-solvent), respectively.

Extraction of Surface-Active Substances from Defatted Rice Bran by Supercritical Carbon Dioxide (초임계 CO2유체 추출법을 이용한 탈지미강 중 표면활성물질 추출의 최적화)

  • Lee, Hyong-Ju;Lee, Eui-Suk;Hong, Soon-Taek
    • Food Engineering Progress
    • /
    • v.15 no.2
    • /
    • pp.175-181
    • /
    • 2011
  • By using supercritical carbon dioxide fluid, an attempt was made to extract surface-active substances from defatted rice bran. Extraction was carried out according to D-optimal design and results were analyzed by response surface methodology to establish optimum condition. It was found that pressure, temperature and co-solvent (ethanol) influenced in a different extent on the extraction efficiency (i.e., yield and interfacial tension) of surface-active substances. Among them, co-solvent was found to be a major influencing factor, where maximum yield (2.62%) was observed at the highest content (250 g). In addition, it also affected most on the interfacial tension at the oil-water interface but in this case the lowest interfacial tension value (9.51 mN/m) was found when added lowest (50 g). In conclusion, it was estimated that the optimum extraction condition was to be pressure 350bar, temperature $62^{\circ}C$ and co-solvent content 50 g in this study, where extraction yield was 0.69% and interfacial tension to be 10.1 mN/m.

Study on New Extraction Method of Microcystins from Cyanobacteria (남조류로부터 마이크로시스틴을 추출하는 새로운 추출법 연구)

  • Pyo, Dong Jin;Shin, Hyun Du
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.2
    • /
    • pp.149-155
    • /
    • 2001
  • A new analytical method of cyanobacterial toxins, i, e, microcysins was deveeloped using supercritical fluid extraction(SFE). The microcystins mcluded in the study are sparsely soluble in neat supercritical fluid CO$_2$ However, the microcystins were successfully extracted with a temary mixture(90% CO$_2$,9.0% methanol 1.0% water) at 40$^{\circ}$C and 250 atm. The SFE method developed in this study has several advantages over solid-phase extraction(SPE) sample preparation for the analysis of microcystins. Sample handling steps are minimized thus reducing possible losses of analytes and saving analysis time. No clean-up steps are employed in this SFE method. Althouhgh many methods have been described for microcystim RR and LR, the method using solid-phase extraction with ODS cartridges is the most commonly used. However, the adsorbing power of ODS caridges for microcystins is weak, so we have attempted to use a more polar CN cartridge, to increase the adsorbing power for microcystins. Lyophilized cells(100mg) were wxtracted with 5% (v/v) acetic acid. The extract was centrifuged and then the supernatant was applied to a CN cartridge. The cartridge which contained microcystins was rinsed with 5 ml of water and 5 ml of 0.5 M acetic acid. followed by 5 ml of 5% acetonitrile in water , and were determined by HPLC. Better recoveries and chromatogram were observed than with ODS cartridge.

  • PDF

Optimization of Sesame oil Extraction from Sesame cake using Supercritical Fluid $CO_{2}$ (초임계유체 $CO_{2}$를 이용한 참깨박 중 참기름 추출의 최적화)

  • Kim, Seong-Ju;Kim, Young-Jong;Chang, Kyu-Seob
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.431-437
    • /
    • 2005
  • Overall experiments were planned by central composite design, and results were analyzed by response surface methodology (RSM) to determine effects of three independent variables, temperature ($X_{1}$), extraction time ($X_{3}$), and pressure ($X_{3}$), on yield of sesame oil extract (Y). Regression equation model optimized by response surface analysis was: Y (sesame oil) = $-3.89+0.07X_{1}+0.03X_{2}+0.0006X_{3}-0.0007X_{1}^{2}-0.0002X_{2}X_{1}-0.00008X_{2}^{2}+0.000004X_{3}X_{1}+0.0000009X_{3}X_{2}-0.00000009X_{3}^{2}$. According to RSM analysis, optimum extracting conditions of temperature, time, and pressure were $45.89^{\circ}C$, 131.89 min, and 34228.41 kPa, respectively, and statistical maximum yield of sesame oil was 96.27%. Fatty acid composition of sesame oil showed sesame oil extracted by Supereritical Fluid $CO_{2}$ contained lower levels of palmitic, stcaric, and oleic acids and higher levels or palmitoleic and linoleic acids than commercial sesame oil. Commercial and extracted sesame oils were analyzed by electronic nose composed of 12 different metal oxide sensors. Obtained data were interpreted by statistical method of MANOVA. Sensitivities of sensors from electronic nose were analysed by principal component analysis. Proportion of first principal component was 99.92%. All sesame oils showed different odors (p < 0.05).

Volatile Compounds and Antiproliferative Effects of Dendropanax morbifera on HepG2 Cells (황칠나무의 휘발성 화합물 분석 및 HepG2 세포의 증식 억제 효과)

  • Yang, Seun-Ah;Garcia, Coralia V.;Lee, Ji-Won
    • Journal of Life Science
    • /
    • v.27 no.5
    • /
    • pp.561-566
    • /
    • 2017
  • Dendropanax morbifera Lev. is known in Korea for its golden sap and medicinal properties. The many biological activities of the leaf and stem extracts suggest that this tree could be a valuable source of medicinal compounds for the treatment of various ailments such as dermatitis, migraines, dysmenorrhea, muscle pain, and infectious diseases. However, there is little information on the composition and biological activity of the volatile fraction of D. morbifera. Therefore, in this study, the volatile compounds in leaves, stems, and sap of D. morbifera were isolated using solvent and supercritical fluid extraction (SFE), and analyzed by gas chromatography/mass spectrometry to reveal their chemical composition and identify potential compounds of interest. Fifteen compounds were identified in the leaf extracts, whereas 29 and 3 compounds were identified in the stem and sap extracts, respectively. The volatile profiles obtained using solvent and SFE differed. Esters and aromatic hydrocarbons predominated in the solvent extract of leaves and SFE extract of stems, whereas the solvent extract of stems and SFE extract of leaves contained terpenoids. Limonene, ${\alpha}$-pinene, and ${\beta}$-myrcene were identified in the volatile extract of sap, with limonene representing 96.30% of the total peak area. In addition, the antiproliferative effects of the solvent extracts of leaves and stems were evaluated, revealing that these solvent extracts were particularly effective in decreasing the proliferation of HepG2 cells.

Isolation of Functional Fatty Acid in Cosolvent Induced SFE Process (공용매가 첨가된 초임계유체 추출공정에서 기능성 지방산의 추출)

  • Lee, Seung Bum;Park, Kyung Ai;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.438-444
    • /
    • 1999
  • The natural full-fat rice bran is reported to contain 8.4 to 14.7 wt % Lipids, but the amount and composition of bran depend on the type of rice, quality of paddy, pretreatments to paddy such as parboiling, type of milling system employed, and the degree of polishing. These lipids are usually mixtures of several class fatty acids containing palmitic acid, linolenic acid, linoleic acid, oleic acid, stearic acid, tocopherol, squalene, etc. In this study the oil rich essential fatty acid (EFA) including squalene was extracted from the domestic brown rice bran using supercritical fluid extraction (SFE) and cosolvent induced SFE process, respectively. And the extracts were analyzed with GC-MSD. The extracted amount of rice bran oil was dependent upon the operating pressure and temperature, and the fatty acid composition of oil was varied with the reduced density (${\rho}_{\gamma}$) of supercritical carbon dioxide. About 70~80% of rice bran oil was extracted in 4hrs. The cosolvent induced SFE process shortened the total extraction time, extracted greater amount of oil than SFE process. Especially squalene which was not found in solvent extract phase was identified in SFE and cosolvent induced SFE process.

  • PDF

Antiallergic Effect of Two Variants of Artemisia princeps Pampanini

  • Shin, Yong-Wook;Bae, Eun-Ah;Lee, Bo-Mi;Min, Sung-Won;Lee, Jin-Hee;Baek, Nam-In;Ryu, Su-No;Chung, Hae-Gon;Kim, Nam-Jae;Kim, Dong-Hyun
    • Natural Product Sciences
    • /
    • v.12 no.2
    • /
    • pp.67-73
    • /
    • 2006
  • Antiallergic activities of two variants of Artemisia princeps Pampanini SJ-1 (named as Sajabalssuk) and SS-1 (named as Sajuarissuk) cultivated in Ganghwado, which contain high content of eupatilin compared to those cultured by other places, were investigated to evaluate the possibility as inhibitors against allergic diseases. Ethanol and supercritical fluid extracts of SJ-1 and SS-1 inhibited the release of ${\beta}-hexosaminidase$ from RBL-2H3 cells, although their water extracts were inactive. These extracts potently inhibited lipopolysaccharide-induced NO production of RAW264.7. However, these extracts almost did not scavenge free radicals. Oral administration of these extracts to mice inhibited passive cutaneous anaphylaxis reaction induced by IgE, and acute dermatitis induced by 12-O-tetradecanoylphorbol-13-acetate. However, these extracts did not inhibit chronic dermatitis. Scratching behaviors, vascular permeability, and writhing syndromes were weakly inhibited by these extract at a dose of 50 mg/kg. Based on these findings, we believe that SJ-1 and SS-1 can improve IgE-induced allergic diseases such as rhinitis and asthma.

Aroma Characteristics of Applemint (Mentha rotundifolia(L.) Huds) with Different Extraction Methods (추출방법에 따른 애플민트의 향기특성)

  • Min, Young-Kyoo;Yoon, Hyang-Sik;Kim, Ji-Yeoun;Jeong, Heon-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1465-1470
    • /
    • 1999
  • Aroma was extracted from Applemint(Mentha rotundifolia(L.) Huds) with SDE(simultaneous distillation and extraction), SFE(supercritical fluid extraction) and headspace method and the compounds of aroma were tentatively identified with GC-MS. The functionality of aroma compounds were determined with GC-olfactometry. Total 67 compounds were identified. Among them, 39 compounds were determined from SDE, 42 from SFE and 16 from headspace extract. Many terpene compounds were extracted with SDE and headspace methods but hydrocarbones with SFE. The major constituents of aroma obtained from SDE and SFE, were piperitenone oxide, germacrene-D and trans sabinene hydrate, but those from headspace method were 3-octanol, 1,8-cineol, camphene and benzeneacetaldehyde. Results of sniffing test, determining characteristics and strength of aroma showed that the major constituents of SDE extract were refreshing sweet and apple-like(ethyl-2-methyl butanoate), sweet and fruity-like$({\alpha}-thujene)$, fresh mushroom-like(1-octen-3-ol, 3-octanol), and bitter herb-like$({\delta}-cadidene)$. Major constituents of aroma extracts obtained from headspace method were alcoholic, refreshing sweet and apple-like(ethyl 2-methyl butanoate), unpleasant chemical, and bitter herb and grassy-like(camphene).

  • PDF

Immunomodulating activity of Sargassum horneri extracts in RAW264.7 macrophages (RAW264.7 대식세포에서 괭생이 모자반 추출물의 면역활성 증진 효과)

  • Kim, Dong-Sub;Sung, Nak-Yun;Park, Sang-Yun;Kim, Geon;Eom, Ji;Yoo, Jin-Gon;Seo, In-Ra;Han, In-Jun;Cho, Young-Baik;Kim, Kyung-Ah
    • Journal of Nutrition and Health
    • /
    • v.51 no.6
    • /
    • pp.507-514
    • /
    • 2018
  • Purpose: Sargassum horneri (S. horneri) is a species of brown macroalgae that is common along the coast of Japan and Korea. The present study investigated the immuno-modulatory effects of different types of S. horneri extracts in RAW264.7 macrophages. Methods: S. horneri was extracted by three different methods, hot water extraction, 50% ethanol extraction, and supercritical fluid extraction. Cell viability was then measured by MTT assay, while the production levels of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-6 (IL-6), and nitric oxide (NO) were measured by enzyme-linked immunosorbent assay and Griess assay, respectively. The expression and activation levels of inducible NO synthase (iNOS), mitogen-activated protein kinase (MAPK) and nuclear factor ${\kappa}B$ ($NF-{\kappa}B$) were examined by western blot analysis. Results: The three different S. horneri extracts were nontoxic against RAW 264.7 cells up to $50{\mu}g/mL$, among which treatment with hot water extract (HWE) of S. horneri significantly enhanced the production of TNF-${\alpha}$, IL-6, and NO in a dose-dependent manner. Hot water extract of S. horneri also increased the expression level of iNOS, suggesting that up-regulation of iNOS expression by HWE of S. horneri was responsible for the induction of NO production. In addition, treatment of RAW 264.7 macrophages with HWE of S. horneri increased the phosphorylation levels of ERK, p38 and JNK. Furthermore, the activation and subsequent nuclear translocation of $NF-{\kappa}B$ was enhanced upon treatment with HWE of S. horneri, indicating that HWE of S. horneri activates macrophages to secrete TNF-${\alpha}$, IL-6 and NO and induces iNOS expression via activation of the $NF-{\kappa}B$ and MAPKs signaling pathways. Conclusion: Taken together, these findings suggest that HWE of S. horneri possesses potential as a functional food with immunomodulatory activity.