Extraction of Surface-Active Substances from Defatted Rice Bran by Supercritical Carbon Dioxide

초임계 CO2유체 추출법을 이용한 탈지미강 중 표면활성물질 추출의 최적화

  • Lee, Hyong-Ju (Department of Food Science and Technology, Chungnam National University) ;
  • Lee, Eui-Suk (Department of Food Science and Technology, Chungnam National University) ;
  • Hong, Soon-Taek (Department of Food Science and Technology, Chungnam National University)
  • Received : 2011.04.25
  • Accepted : 2011.05.18
  • Published : 2011.05.30

Abstract

By using supercritical carbon dioxide fluid, an attempt was made to extract surface-active substances from defatted rice bran. Extraction was carried out according to D-optimal design and results were analyzed by response surface methodology to establish optimum condition. It was found that pressure, temperature and co-solvent (ethanol) influenced in a different extent on the extraction efficiency (i.e., yield and interfacial tension) of surface-active substances. Among them, co-solvent was found to be a major influencing factor, where maximum yield (2.62%) was observed at the highest content (250 g). In addition, it also affected most on the interfacial tension at the oil-water interface but in this case the lowest interfacial tension value (9.51 mN/m) was found when added lowest (50 g). In conclusion, it was estimated that the optimum extraction condition was to be pressure 350bar, temperature $62^{\circ}C$ and co-solvent content 50 g in this study, where extraction yield was 0.69% and interfacial tension to be 10.1 mN/m.

초임계 $CO_2$유체를 이용하여 미강 중 표면활성물질을 추출하고 추출물의 표면활성능을 최적화하는 추출 조건을 반응표면분석법을 통해 조사하고자 하였다. 추출수율은 독립변수인 압력, 온도, 보조용매량이 많을수록 높았으며, 보조용매량이 추출수율에 가장 큰 영향을 주었다. 회귀분석을 통해서 얻은 최적 추출 조건은 추출압력 330 bar, 추출온도 $65^{\circ}C$, 보조용매량 250 g이었다. 표면활성능 지표인 계면장력은 추출압력과 추출온도가 증가할수록 그리고 보조용매량이 높을수록 낮았으며, 추출수율과 마찬가지로 보조용매량이 계면장력에 가장 큰 영향을 주었지만 추출압력과 추출온도 등의 변수에 의한 영향은 비교적 적었다. 회귀분석을 통해서 얻은 최적 추출 조건(낮은 계면장력)은 추출압력 350 bar, 추출온도 $65^{\circ}C$, 보조용매량 50 g이었다. 또한 D-optimal design을 통해 얻은 실험 결과를 바탕으로 회귀분석을 하였을 때 예측모델식은 실제 측정값과 비교해 높은 유의성을 나타내는 것으로 판단되었다. 보조용매량이 많을수록 극성 물질이 더 많이 추출되어 낮은 계면장력 값을 예상하였지만 실제 측정 결과 보조용매량이 가장 낮은 조건인 50 g에서 계면장력은 가장 낮게 측정되었다. 이의 규명을 위하여 TLC 및 HPLC 분석을 통한 추출물에 대한 성분 조사, 추출물을 이용한 유화액 제조, 유화액 특성 평가 등 추가 실험이 필요한 것으로 사료되었다.

Keywords

Acknowledgement

Supported by : 충남대학교

References

  1. Adebiyi AP, Adebiyi AO, Ogawa T, Muramoto K. 2007. Preparation and characterization of high-quality rice bran proteins. J. Sci. Food Agric. 87: 1219-1227. https://doi.org/10.1002/jsfa.2819
  2. Chandi GK, Sogi DS. 2007. Functional properties of rice bran protein concentrates. J. Food Eng. 79: 592-597. https://doi.org/10.1016/j.jfoodeng.2006.02.018
  3. Dunford NT, Temelli. F. 1995. Extraction of phospholipids from canola with supercritical carbon dioxide and ethanol. J. Am. Oil Chem. Soc. 72: 1009-1015. https://doi.org/10.1007/BF02660713
  4. Floch FL, Tena MT, Ri'os A, Valcarcel M. 1998. Supercritical fluid extraction of phenol compounds from olive leaves. Talanta. 46: 1123-1130. https://doi.org/10.1016/S0039-9140(97)00375-5
  5. Ju YW. 2005. Studies on production of a high contents of functional compounds in sesame oil by supercritical carbon dioxide, Ph. D. Disseration, Ajou University, Suwon.
  6. Kang JW, Lim JS, Byun HS. 2006. Applications of molecular modeling method for thermophysical properties estimations. Prospectives Ind. Chem. 9: 41-52.
  7. Kim SR, Ahn JY, Lee HY, Ha TY. 2004. Various properties and phenolic acid contents of rices and rice brans with different millig fractions. Korean J. Food Sci. Technol. 36: 903-936.
  8. Lee ES, Kim KJ, Kim JH, Hong ST. 2010. A study on the development of high functional food protein ingredient from rice bran. J. Agr Sci. 37: 61-68.
  9. Lee MJ, Jeon YS, Jeong NH, Jeong BS. 2010. Selective extraction of phospholipids from soybean with mixture of supercritical carbondioxide and ethanol. J. Am. Oil Chem. Soc. 27: 233-239.
  10. Lee JH, Byun SY. 2008. Enrichment of coffee flavors with supercritical carbon dioxide. Korean J. Biotechnol. Bioeng. 25: 193-198.
  11. Lee JH, Kim HB, Byun SY. 2007. Coffee deodorization with supercritical carbon dioxide. Korean J. Biotechnol. Bioeng. 22: 336-340.
  12. Montanari L, Fantozzi P, Snyder JM, King JW. 1999. Selective extraction of phospholipids from soybeans with supercritical carbon dioxide and ethanol. J. Supercrit Fluid. 14: 87-93. https://doi.org/10.1016/S0896-8446(98)00110-7
  13. Monatanari L, King JW, List GR, Rennick KA. 1996. Selective extraction of phospholipid mixtures by supercritical carbon dioxide and co-solvents. J. Food Sci. 61: 1230-1233 & 1253. https://doi.org/10.1111/j.1365-2621.1996.tb10967.x
  14. Tang S, Hettiarachchy NS, Horax R, Eswaranandam S. 2003. Physicochemical properties and functionality of rice bran protein hydrolyzate prepared from heat-stabilized deffated rice bran with the aid of enzymes. J. Food Sci. 68: 152-157. https://doi.org/10.1111/j.1365-2621.2003.tb14132.x
  15. Toliwal SD, Patel K. 2007. Prepareation and surfactant properties of diethanolamide of rice bran, soybean and rapeseed proteins. J. Sci. Ind. Res. India. 66: 385-387.
  16. Yeom HJ, Lee EH, Ha MS, HA SD, Bae DH. 2010. Production and physicochemical properties of rice bran protein isolates prepared with autoclaving and enzymatic hydrolysis. J. Korean Soc. Appl. Biol. Chem. 53: 62-70.
  17. Yun SE, Hong ST. 2007. Isolation and investigation of emulsifying properties of surface-active substances from rice bran. Food Hydrocolloid. 21: 838-843. https://doi.org/10.1016/j.foodhyd.2006.11.019
  18. Wang M, Hettiarachchy NS, Qi M, Burks W, Siebenmorgen T. 1999. Preparation and functional properties of rice bran protein isolate. J. Agric. Food Chem. 47: 411-416. https://doi.org/10.1021/jf9806964
  19. Wiboonsirikul J, Hata S, Tsuno T, Kimura Y, Adachi S. 2007. Production of functional substances from black rice bran by its treatment in subcritical water. LWT. 40: 1732-1740. https://doi.org/10.1016/j.lwt.2007.01.003