• Title/Summary/Keyword: supercritical flow

Search Result 198, Processing Time 0.022 seconds

NUMERICAL STUDIES ON FLOWS WITH STRONG PROPERTY VARIATIONS THROUGH STRAIGHT RECTANGULAR CHANNELS (곧은 사각채널을 통과하는 물성 변화가 큰 유동에 대한 수치해석)

  • Choi, Nam-Jung;Choi, Yun-Ho
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.74-84
    • /
    • 2007
  • The flowfield characteristics in a straight rectangular channel have been investigated through a numerical model to analyze the regenerative cooling system that is used in rocket engine cooling. The supercritical hydrogen coolant introduces strong property variations that have a major influence on the developing flow and heat transfer characteristics. Of particular interest is the improved understanding of the physical characteristics of such flows through parametric studies. The approach used is a numerical solution of the full Navier-Stokes equations in the three dimensional form including the arbitrary equation of state and property variations. The present study compares constant and variable property solutions for both laminar and turbulent flow. For laminar flow, the variation of aspect ratio is examined, while for turbulent flow, the effects of variation of channel length and Reynolds number are discussed.

Three-dimensional dynamics of vortex-induced vibration of a pipe with internal flow in the subcritical and supercritical regimes

  • Duan, Jinlong;Chen, Ke;You, Yunxiang;Wang, Renfeng;Li, Jinlong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.692-710
    • /
    • 2018
  • The Three-dimensional (3-D) dynamical behaviors of a fluid-conveying pipe subjected to vortex-induced vibration are investigated with different internal flow velocity ${\nu}$. The values of the internal flow velocity are considered in both subcritical and supercritical regimes. During the study, the 3-D nonlinear equations are discretized by the Galerkin method and solved by a fourth-order Runge-Kutta method. The results indicate that for a constant internal flow velocity ${\nu}$ in the subcritical regime, the peak Cross-flow (CF) amplitude increases firstly and then decrease accompanied by amplitude jumps with the increase of the external reduced velocity. While two response bands are observed in the In-line (IL) direction. For the dynamics in the lock-in condition, 3-D periodic, quasi-periodic and chaotic vibrations are observed. A variety of CF and IL responses can be detected for different modes with the increase of ${\nu}$. For the cases studied in the supercritical regime, the dynamics shows a great diversity with that in the subcritical regime. Various dynamical responses, which include 3-D periodic, quasi-periodic as well as chaotic motions, are found while both CF and IL responses are coupled while ${\nu}$ is beyond the critical value. Besides, the responses corresponding to different couples of ${\mu}_1$ and ${\mu}_2$ are obviously distinct from each other.

Visualization of Supercritical Mixed Hydrocarbon-Fuel Droplet (혼합 탄화수소계 초임계 상태 연료의 액적 거동 가시화)

  • Song, Juyeon;Song, Wooseok;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.711-716
    • /
    • 2020
  • Injection visualization of heated mixed simulant droplets based on hydrocarbon fuel was performed under supercritical state environment. Mixed simulant consisted of Decane and Methylcyclohexane with different critical pressure and critical temperature. Flows injected into the supercritical state environment created droplet by Rayleigh breakup mechanism, and the Oh number and Re number were determined to confirm the breakup area. The temperature of the mixed simulant varied from Tr=0.49 to Tr=1.34. The flow rate was maintained at 0.7 to 0.8 g/s. Droplet became shorter in breakup length as heated and into a lumped form. Second droplet was formed and when Tr=1.34, the phase was not visible in the supercritical state with local unsteady flow.

Saccharification of lignocellulosics by Supercritical Water (초임계수를 이용한 목질바이오매스의 당화 특성)

  • Choi, Joon-Weon;Lim, Hyun-Jin;Jo, Tae-Su;Han, Gyu-Sung;Choi, Don-Ha
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.38-45
    • /
    • 2007
  • To characterize thermo-chemical feature of sugar conversion of woody biomass, poplar wood ($Populus\;alba{\times}glandulosa$) powder was treated with supercritical water system. Supercritical water treatment (SCWT) was performed for 60 seconds at different temperatures (subcritical zone 350; supercritical zone $300,\;400,\;425^{\circ}C$) under two pressures $230{\pm}10atm$ as well as $330{\pm}10atm$, respectively, using flow type system. After separation of solid residues from SCWT products, the monomeric sugars in aqueous part converted from poplar wood powder were quantitatively determined by high performance anionic exchange chromatography [HPAEC] equipped with PAD detector and Carbo Pac PA10 column. As the temperature treated increased, the degradation of poplar wood powder was enhanced and ca 83% of woody biomass was dissolved into the water at $425^{\circ}C$. However, the pressure didn't help the degradation of biomass components. At subcritical temperature range, xylose was first formed by degradation of xylan, which is main hemicellulose component in hardwood species, while cellulose degradation started at the transition zone between sub and supercritical conditions and was remarkably accelerated at the supercritical temperature. In the supercritical water system the maximum yield of monomeric sugars amounts to ca. 7.3% based on oven dried wood weight at $425^{\circ}C$.

  • PDF

High-pressure rheology of polymer melts containing supercritical carbon dioxide

  • Lee Sang-Myung;Han Jae-Ro;Kim Kyung-Yl;Ahn Young-Joon;Lee Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.2
    • /
    • pp.83-90
    • /
    • 2006
  • Supercritical carbon dioxide ($scCO_2$) has advantages of being incorporated in polymer with high solubility and of being recovered easily by depressurizing. $scCO_2$ reduces the viscosity of polymer melt and it is expected to be use as a plasticizing agent. In this work, we studied on the effect of $scCO_2$ on the rheological properties of polymer melts during extrusion process. Slit die attached to twin screw extruder was used to measure the viscosity of polymer melts plasticized by supercritical $CO_2$. A gas injection system was devised to accurately meter the supercritical $CO_2$ into the extruder barrel. Measurements of pressure drop within the die, confirmed the presence of a one phase mixture and a fully developed flow during the measurements. The viscosity measurement of polypropylene was performed at experimental conditions of various temperatures, pressures and $CO_2$ concentrations. We observed that melt viscosity of polymer was dramatically reduced by $CO_2$ addition.

ASSESSMENT OF STABILITY MAPS FOR HEATED CHANNELS WITH SUPERCRITICAL FLUIDS VERSUS THE PREDICTIONS OF A SYSTEM CODE

  • Ambrosini, Walter;Sharabi, Medhat Beshir
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.627-636
    • /
    • 2007
  • The present work is aimed at further discussing the effectiveness of dimensionless parameters recently proposed for the analysis of flow stability in heated channels with supercritical fluids. In this purpose, after presenting the main motivations for the introduction of these parameters in place of previously proposed ones, additional information on the theoretical bases and on the consequences of this development is provided. Stability maps, generated by an in-house program adapted from a previous application to boiling channels, are also shown for different combinations of the operating parameters. The maps are obtained as contour plots of an amplification parameter obtained from numerical discretization and subsequent linearization of governing equations; as such, they provide a quantitatively clear perspective of the effect of different boundary conditions on the stability of heated channels with supercritical fluids. In order to assess the validity of the assumptions at the basis of the in-house model, supporting calculations have been performed making use of the RELAP5/MOD3.3 computer code, detecting the values of the dimensionless parameters at the threshold for the occurrence of instability for a heated channel representative of SCWR proposed core configurations. The obtained results show reasonable agreement with the maps, supporting the applicability of the proposed scaling parameters for describing the dynamic behaviour of heated channels with supercritical fluids.

Supercritical $CO_2$ Extraction of Whole Berry Oil from Sea Buckthorn ($Hippopha\ddot{e}$ rhamnoides var. sp) Fruit

  • Xu, Xiang;Gao, Yanxiang;Liu, Guangmin;Zheng, Yuanyuan;Zhao, Jian
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.470-474
    • /
    • 2008
  • The whole berry, pulp, and seed of sea buckthorn fruit were extracted with supercritical $CO_2$ to produce edible oils. The effects of extraction pressure, temperature, and $CO_2$ flow rate on the oil yield and extraction rate were investigated, and the fatty acid composition, tocopherol, and carotenoid contents of the oils were compared. The results showed that the extraction rate was affected by pressure, temperature, and $CO_2$ flow rate and, in general, the yield increased with a rise in any of the 3 variables. Fatty acids in the whole berry and pulp oil were dominated by monounsaturated fatty acids (>64%), followed by saturated fatty acids (about 30%). In contrast, fatty acids in the seed oil consisted mainly of polyunsaturated (>60%) and monounsaturated fatty acids (>24%). The seed oil had a slightly higher content of tocopherols, but a much lower content of carotenoids, compared with the whole berry or pulp oil.

Characterization of the Yellow Croaker Larimichthys polyactis muscle Oil Extracted with Supercritical Carbon Dioxide and an Organic Solvent

  • Lee, Joo-Hee;Asaduzzaman, A.K.M.;Yun, Jun-Ho;Yun, Jun-Hyun;Chun, Byung-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.4
    • /
    • pp.275-281
    • /
    • 2012
  • Yellow croaker Larimichthys polyactis muscle oil was extracted using an environmental friendly solvent, supercritical carbon dioxide (SC-$CO_2$), in a semi-batch flow extraction process. SC-$CO_2$ was applied at temperature $35^{\circ}C$ to $45^{\circ}C$ and $150^{\circ}C$ to $250^{\circ}C$ bar of pressure. The flow rate of $CO_2$ (27.79 g/min) was constant throughout the entire 1.5 h extraction period. The oil extraction yield was influenced by the physical properties of SC-$CO_2$ at different temperatures and pressures. The extracted oil was analyzed by gas chromatography to determine the fatty acid composition. According to our results, the SC-$CO_2$ extracted oil was high in eicosapentaenoic acid and docosahexaenoic acid. In addition, the SC-$CO_2$ extracted oil showed greater stability than n-hexane extracted oil based on the peroxide value and acid value. Thus, the quality of yellow croaker oil obtained by SC-$CO_2$ extraction was slightly higher than that of oil obtained by n-hexane extraction.

Experimental Investigation of Heat Transfer During Vertical Upward Flow of Supercritical CO2 in Circular Tube (초임계 이산화탄소의 수직 상향 유동에서의 관내 열전달에 관한 실험적 연구)

  • Kim, Dong Eok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.607-618
    • /
    • 2014
  • An experimental investigation of turbulent heat transfer during the vertical upward flow of supercritical $CO_2$ was conducted in a circular tube with inner diameter of 4.5 mm. The experiments were conducted at bulk fluid temperatures ranging from 29 to $115^{\circ}C$, pressures from 74.6 to 102.6 bar, local wall heat fluxes from 38 to $234kW/m^2$, and mass fluxes from 208 to $874kg/m^2s$. At moderate wall heat and low mass fluxes, the wall temperature had a noticeable peak value. For observing the buoyancy and flow acceleration effects on heat transfer, the ratios of Nusselt numbers from the experimental data and a reference correlation were compared with the $Bo^*$ and $q^+$ distributions. The flow acceleration parameter $q^+$ appropriately represented the heat transfer phenomena in the experiments. A new heat transfer correlation for the vertical upward flow of the supercritical pressure fluid was developed, and was found to agree with the experimental data with an error margin of ${\pm}30%$.

Supercritical $CO_2$ Extraction of Sesame Oil with High Content of Tocopherol (초임계 이산화탄소를 이용한 토코페롤 고함유 참기름 추출)

  • Ju Young-Woon;Son Min-Ho;Lee Ju-Suk;Byun Sang Yo
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.210-214
    • /
    • 2005
  • The characteristics of sesame oil containing one of natural antioxidant, ' $\gamma$-tocopherol', were studied with the supercritical $CO_2$ extraction. Although $\gamma$-tocopherol has a lower vitamin E value in biological systems than $\alpha$-tocopherol, it is a more potent antioxidant with in oils. For the research of various factors influence to the $\gamma$-tocopherol contents increment, we have checked roasting time and temperature, as well as pressure, temperature and flow rate of supercritical fluid. As a result, we found that the $\gamma$-tocopherol content was maintained constant under the condition of roasting temperature over $200^{\circ}C$. With the longer roasting time, $\gamma$-tocopherol content was increased. Except 250 bar, the $\gamma$-tocopherol content was maintained constant under the condition of the various pressure of supercritical fluid. But $\gamma$-tocopherol content was increased with lower flow rate of supercritical fluid from 1 $m{\ell}$/L to 3 $m{\ell}$/L. When the extraction performance with the supercritical fluid was compared to the conventional compressed extraction, $\gamma$-tocopherol content was increased up to 1.6 times.