• 제목/요약/키워드: superconductor coil

검색결과 86건 처리시간 0.02초

YBCO 세라믹의 전기적 특성 (Electric Properties of YBCO Superconductor)

  • 이상헌
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.292-293
    • /
    • 2005
  • An electromagnetic memory effect observed in superconducting YBCO system was studied. From the measurement of differential conductance, it was cleared that the mechanism of electromagnetic memory can not be explained by using conventional flux flow model. By changing the density of external magnetic flux, changes in inductance of a coil in which a superconducting bar is inserted were also measured. It was concluded that the electromagnetic memory effect aries from the interaction between the trapped magnetic flux and the weak link of the filament formed in the superconducting bar.

  • PDF

초전도 코일 적용으로 인한 DC 차단기의 차단 용량 증대 (Extension of Cut-off Capacity of DC Circuit Breaker due to Superconducting Coil Application)

  • 최혜원;최효상
    • 전기학회논문지
    • /
    • 제68권4호
    • /
    • pp.593-597
    • /
    • 2019
  • We proposed a current Interruption type DC superconducting circuit breaker(I-DC SCB), a protection device that combines the current limiting technology of a superconductor with the cut-off technology of circuit breaker. Unlike existing protective devices, the current I-DC SCB is a device that combines two protection functions, notably improving failure probability and operational reliability. It is also applicable to all DC systems, such as HV, MV, and LVDC, due to the ease in capacity increase. The 100 kV I-DC SCB was designed after taking into account the actual power system conditions, followed by an analysis of the transient characteristics and the breaking range of the limiter. The results of the analysis showed that the I-DC SCB had a fault current limit of about 75% at the rated voltage, and completed the cut-off operation within about 20 ms.

Design of an Air-Core HTS quadruple triplet for a heavy ion accelerator

  • Zhang, Zhan;Wei, Shaoqing;Lee, Sangjin
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권4호
    • /
    • pp.35-39
    • /
    • 2016
  • In recent years, high-temperature superconductor (HTS) Quadruple Triplets are being developed for heavy ion accelerators, because the HTS magnets are suitable to withstand radiation and high heat loads in the hot cell of accelerators. Generally, an iron yoke, which costs a mass of material, was employed to enhance the magnetic field when a quadrupole magnet was designed. The type of the magnet is called iron-dominated magnet, because the total magnetic field was mainly induced by the iron. However, in the HTS superconductor iron-dominated magnets, the coil-induced field also can have a certain proportion. Therefore, the air-core HTS quadrupole magnets can be considered instead of the iron-core HTS quadrupole magnet to be employed to save the iron material. This study presents the design of an air-core HTS quadruple triplet which consists three by air-core HTS quadruple magnet and compare the design result with that of an iron-core HTS quadruple triplet. First, the characteristics of an air-core HTS quadrupole magnet were analyzed to select the magnet system for the magnetic field uniformity impairment. Then, the field uniformity was improved(< 0.1%) exactly using evolution strategy (ES) method for each iron-core HTS quadrupole magnet and the air-core HTS quadruple triplet was established. Finally, the designed air-core triplet was compared with the iron-core HTS quadruple triplet, and the results of beam trajectories were presented with both the HTS quadruple triplet systems to show that the air-core triplet can be employed instead of the iron-core HTS triplet. The design of the air-core quadruple triplet was suggested for a heavy ion accelerator.

초전도 전류제한소자를 적용한 DC 차단기의 동작 특성 분석 (Analysis of Operation Characteristics of DC Circuit Breaker with Superconducting Current Limiting Element)

  • 정병익
    • 한국전자통신학회논문지
    • /
    • 제15권6호
    • /
    • pp.1069-1074
    • /
    • 2020
  • DC에는 전류 영점이 없기 때문에 DC 차단기의 차단 동작시 아크가 발생한다. 이때 발생하는 아크의 크기에 따라 회로 차단기의 열화 또는 그리드에 치명적인 사고를 발생시킬 수 있다. 따라서 HVDC의 상용화에 있어서 DC차단기의 차단 성능의 안정성 확보는 대단히 중요한 부분이다. 본 연구에서는 DC 차단기의 성능과 신뢰성을 향상시키기 위해 초전도체가 적용된 LC 차단기를 제안하였다. 초전도 LC 차단기는 기존 LC 차단기의 인덕터에 초전도 코일을 적용한 구조로 되어있다. 초기 고장 전류를 제한하는 것 외에도 고장 발생시 안정적인 전류 0점을 생성한다. 이를 확인하기 위해 EMTDC / PSCAD 프로그램을 통해 시뮬레이션을 수행하였다. 또한 초전도 LC 차단기는 일반 코일이 적용된 LC 차단기와의 동작 특성을 비교하였다. 그 결과 초전도 코일이있는 LC 회로 차단기는 일반 코일이있는 LC 회로 차단기에 비해 초기 고장 전류를 약 12kA 더 제한하는 것으로 나타났다. 이러한 결과를 통해서 DC 차단기의 아크 소화 시간을 약 0.16 초 단축시킬 수 있었고, 이를 통해 회로 차단기의 전기적 부담이 줄어드는 것을 확인할 수 있었다.

직렬 연결된 두 코일과 YBCO Coated Conductor로 구성된 초전도 전류제한기의 권선방향과 권선 비에 따른 전류제한 특성 분석 (Analysis on Current Limiting Characteristics of the SFCL with Magnetically Coupled Two Coils and YBCO Coated Conductor Due to the Winding Direction and the Turn Number' Ratio Between Two Coils)

  • 이동혁;두호익;김용진;한병성;한상철;이정필
    • 한국전기전자재료학회논문지
    • /
    • 제24권1호
    • /
    • pp.52-56
    • /
    • 2011
  • The ongoing Superconducting Fault Current Limiter(SFCL) development mainly has focused on the application of commercializaton and power system through combining with normal-conducting device, moving away from current-limiting method, which is solely dependant on the existing superconductor. Compared to the structural development above, on the other hand, the research on applying superconducting current-limiting element to SFCL, the heart of SFCL, still has a lot left to do, apart form traditional resistive type SFCL. In this study, we looked into the current limiting characteristic of SFCL using core and coil. YBCO coated conductor with stainless steel stabilizer layer was verified by the excellent of current-limiting element of the resistive type SFCL that has a high Jc and index as well as being superior in mechanical property. Also, we study temperature characteristics and resistance characteristics, max voltage, response time and current-limiting ability that can be an indicator as current-limiting element while applying to superconducting current-limiting element caused by variation of winding direction, winding ratio of SFCL using core and coil.

Contact resistance increment of no-insulation REBCO magnet during a quench

  • Im, Chaemin;Cho, Mincheol;Bang, Jeseok;Kim, Jaemin;Hahn, Seungyong
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권1호
    • /
    • pp.31-35
    • /
    • 2019
  • The lumped-parameter circuit model for a no- insulation (NI) high temperature superconductor (HTS) magnet has been well understood after many experimental and analytic studies over a decade. It successfully explains the non-linear charging behaviors of NI magnets. Yet, recently, multiple groups reported that the post-quench electromechanical behaviors of an NI HTS magnet may not be well explained by the lumped circuit model. The characteristic resistance of an NI magnet is one of the key parameters to characterize the so-called "NI behaviors" of an NI magnet and recently a few groups reported a potential that the characteristic resistance of an NI magnet may substantially vary during a quench. This paper deals with this issue, the increment of contact resistance of the no-insulation (NI) REBCO magnet during a quench and its impact on the post-quench behaviors. A 7 T 78 mm NI REBCO magnet that was previously built by the MIT Francis Bitter Magnet Laboratory was chosen for our simulation to investigate the increment of contact resistance to better duplicate the post-quench coil voltages in the simulation. The simulation results showed that using the contact resistance value measured in the liquid nitrogen test, the magnitude of the current through the coil must be much greater than the critical current. This indicates that the value of the contact resistance should increase sharply after the quench occurs, depending on the lumped circuit model.

탑재형 냉동기를 이용한 고온 초전도 모터 개발 및 회전 실험 (Development and rotating test of the high temperature superconducting motor with on-board cryocooler)

  • 기태경;김영권;김희선;정상권
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권1호
    • /
    • pp.12-16
    • /
    • 2011
  • In this paper, the prototype of the HTS motor with an on-board cryocooler, is fabricated and tested. The overall system is composed of the stator with conventional copper winding, the rotor with superconductor, and the rotating cryocooler designed from the on-board concept. The rotor is fabricated as the race-track coil with 2G, YBCO tape and contacts with the on-board cryocooler while being rotated together. An inline-type pulse tube refrigerator is used as the on-board cryocooler. The cryocooler is fabricated from optimal process to satisfy the structure and thermal stability of the on-board system. Each component is integrated according to carefully defined sequence. Specially, a combining method of torque tubes is an important part for sustaining stability of the rotor and the cryocooler. In the rotating test, the HTS motor is successfully operated with 240 rpm of rotating speed when 75 A current is supplied to the superconducting rotor. In this paper, potential problems of the HTS motor system using the on-board cryocooler are proposed and solved, and realistic possibility of this concept is also confirmed.

Review of progress in electromechanical properties of REBCO coated conductors for electric device applications

  • Shin, Hyung-Seop;Dedicatoria, Marlon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권4호
    • /
    • pp.7-16
    • /
    • 2014
  • Rare-earth barium copper oxide (REBCO) coated conductor (CC) tapes have already been commercialized but still possess some issues in terms of manufacturing cost, anisotropic in-field performance, $I_c$ response to mechanical loads such as delamination, homogeneity of current transport property, and production length. Development on improving its performance properties to meet the needs in practical device applications is underway and simplification of the tape's architecture and manufacturing process are also being considered to enhance the performance-cost ratio. As compared to low temperature superconductors (LTS), high temperature superconductor (HTS) REBCO CC tapes provide a much wider range of operating temperature and a higher critical current density at 4.2 K making it more attractive in magnet and coil applications. The superior properties of the REBCO CC tapes under magnetic field have led to the development of superconducting magnets capable of producing field way above 23.5 T. In order to achieve its optimum performance, the electromechanical properties under different deformation modes and magnetic field should be evaluated for practical device design. This paper gives an overview of the effects of mechanical stress/strain on $I_c$ in HTS CC tapes due to uniaxial tension, bending deformation, transverse load, and including the electrical performance of a CC tape joint which were performed by our group at ANU in the last decade.

고온초전도 한류기용 코일의 턴간 절연 특성 (Turn-to-Turn Dielectric Characteristics of Coils for HTSFCL)

  • 백승명;정종만;이창화;류엔반둥;김상현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 제5회 영호남 학술대회 논문집
    • /
    • pp.15-18
    • /
    • 2003
  • Fault current limiters (FCL) are extensively needed to suppress fault currents, especially for trunk power systems heavily connected to high voltage/large current transmission lines. Due to its ideal electrical behavior, high-temperature superconductor fault current limiter (HTSFCL) becomes one of the most important developing trends of limiters in power system. This paper describes the result of an investigation of the dielectric characteristics of turn-to-turn insulation for pancake and solenoid type reactor coil in liquid nitrogen. The influence of thickness in a variety length, on AC, DC and impulse surface flashover has been investigated. Also, the relationships between the number of turn and breakdown characteristics were clarified. The information gathered in this test series should be helpful in the design of liquid nitrogen filled DC reactor type HTSFCL.

  • PDF

다중-스트랜드 고온초전도케이블의 불균등 전류분포 (Non-uniform Current Distribution of Multi-Strand HTS Cable)

  • 배준한;배덕권;심기덕;조전욱;고태국
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권7호
    • /
    • pp.424-429
    • /
    • 2004
  • The 4-probe method with a voltage tap on terminals has been used for the measurement of the critical current of multi-strand high-T$_{c}$ superconducting(HTS) cables. And the critical current of cables is obtained as the measured total current divided by the number of conductor when the terminal voltage exceeds the predetermined criterion of critical current. However, because of the non-uniform current distribution due to the different critical current, shapes, and other characteristics of each conductor, this is not applicable method to the multi-strand HTS cable. To determine the critical current of multi-strand HTS cable, the critical current of each conductor must be measured with different method. h this paper, the current distribution and the critical current of each conductors in multi-strand cable were measured with specially made Pick-up coils and voltage taps. It is presented that the real critical current of multi-strand is smaller than sum of each conductors. The main cause of non-uniform current distribution is the difference between the resistances appeared in each HTS wires.s.