• 제목/요약/키워드: superconducting transition

Search Result 229, Processing Time 0.03 seconds

Superconductivity of Ce$O_2$-added Y-Ba-Cu-0 Superconductors Prepared by Partial Melt Process (준용응법으로 제조한 Y-Ba-Cu-O 초전도체에서 Ce$O_2$첨가에 따른 초전도성)

  • Kim, Chan-Joong;Kim, Ki-Baik;Lee, Kyu-Won;Won, Dong-Yeon
    • Korean Journal of Materials Research
    • /
    • v.2 no.3
    • /
    • pp.202-206
    • /
    • 1992
  • The $CeO_2$-added Y-Ba-Cu-O oxides were prepared by the partial melt process involving the peritectic reaction, liquid + 2-1-1 phase ${\rightarrow}$ 1-2-3 phase, to investigate the effect of the dopant on microstructure and superconductivity. During the peritec reaction, all the added $CeO_2$ was converted to $BaCeO_3$ particles which were finely dispersed in large 1-2-3 grains. Superconducting transition temperature($T_{c}R=0$ point) of the partial-melted samples was as high as 90K regardless of $CeO_2$ content up to 5wt%, which is owing to the separation of the second phase from the 1-2-3 superconducting phase.

  • PDF

Preparation of YBCO with additives of PbO, $BaPbO_3$ and its Superconducting Properties

  • Zhanguo, Fan;Soh, Dae-Wha
    • Journal of the Speleological Society of Korea
    • /
    • no.78
    • /
    • pp.17-22
    • /
    • 2007
  • The melting temperature and critical temperature (Tc) of $YBa_2Cu_3O_x$ with deferent content impurities of PbO and $BaPbO_3$ were studied. When the PbO was used as addition in $YBa_2Cu_3O_x$, although the melting point could be reduced, the superconductivity (the transition wide, ${\Delta}T_c$) became poor. From the XRD pattern of the sintered mixture of $YBa_2Cu_3O_x$ and PbO it was known that there is a reaction between $YBa_2Cu_3O_x$ and PbO, and the product is $BaPbO_3$. In the process of the reaction the superconducting phase of $YBa_2Cu_3O_x$ was decreased and in the sample $BaPbO_3$ became the main phase. Therefore the superconductivity was reduced. $BaPbO_3$ was chosen as the impurity for the comparative study. The single phase $BaPbO_3$ was synthesized by the simple way from both mixtures of $BaCO_3$ and PbO, $BaCO_3$ and $PbO_2$. Deferent contents of $BaPbO_3$ (10%, 20%, 30%) were added in the $YBa_2Cu_3O_x$. By the phase analysis in the XRD patterns it was proved that there were not reactions between $YBa_2Cu_3O_x$ and $BaPbO_3$. When $BaPbO_3$ was used as impurity in $YBa_2Cu_3O_x$ the superconductivity was much better than PbO as impurity in $YBa_2Cu_3O_x$. But the melting point of $YBa_2Cu_3O_x$ with $BaPbO_3$ could not be found when the temperature was lower than $1000^{\circ}C$ in the DTA measurement.

Characterization of $YBa_2Cu_3O_{7-x}F_y$ Superconducting Materials Made by a Sol-Gel Process (졸-겔법으로 제조한 $YBa_2Cu_3O_{7-x}F_y$ 초전도물질의 특성분석)

  • 김봉흡;강형부;김현택
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.525-532
    • /
    • 1992
  • Fluorine-doped YBaS12TCuS13TOS17-xTFS1yT superconducting materials with y varing two orders of magnitude form 0.02 to 2.0 have been prepared by a sol-gel process by using metal nitrate salts, sodium hydroxide and sodium fluoride. Fluorine contents have been measured using an ion-selective electrode. All fluorine doped as reactant were found to be present in the resulted samples. From the observation of XRD it has been concluded that the samples with y 0.2 formed simply the single phase of perovskite structure, whereas those with y 0.5 yielded together some compounds such as BaFS12T, YFS13T and CuO in the resulted samples. The observation of solid state S019TF NMR has been carried out in order to check whether fluorine was actually incorporated into the lattice sites, and the experimental results revealed that the mole ratio of fluorine incorporated into the lattice sites of YBaS12TCuS13TOS17-xT was approximately 0.2 per mole of the compound. Also electrical resistivity measurement indicated that onset transition temperature has the tendency to increase slightly with increasing y in the dilute region as y 0.2.

  • PDF

Magnetic Properties of $GdBa_2Cu_3O_{7-y}$ Bulk Superconductors Fabricated by a Top-seeded Melt Growth Process (종자 결정 성장법으로 제조된 $GdBa_2Cu_3O_{7-y}$ 벌크 초전도체의 자기적 특성)

  • Kim, K.M.;Park, S.D.;Jun, B.H.;Ko, T.K.;Kim, C.J.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2012
  • The fabrications condition and superconducting properties of top-seeded melt growth (TSMG) processed $GdBa_2Cu_3O_{7-y}$ (Gd123) bulk superconductors were studied. Processing parameters (a maximum temperature ($T_{max}$), a temperature for crystal growth ($T_G$) and a cooling rate ($R_G$) through a peritectic temperature ($T_P$) for the fabrication of single grain Gd123 superconductors were optimized. The magnetic levitation forces, trapped magnetic fields, superconducting transition temperature ($T_c$) and critical current density ($J_c$) of the Gd123 bulks superconductors were estimated. Single grain Gd123 bulk superconductors were successfully fabricated at the optimized processing condition. The $T_c$ of a TSMG processed Gd123 sample was 92.5 K and the $J_c$ at 77 K and 0 T was approximately $50kA/cm^2$. The trapped magnetic field contour and magnetic levitation forces were dependent on the top surface morphology of TSMG processed Gd123 samples. The single grain Gd123 samples, field-cooled at 77 K using a Nd-B-Fe permanent magnet with 5.27 kG and 30 mm dia., showed the trapped magnetic field contour of a single grain with a maximum of 4 kG at the sample center. The maximum magnetic levitation forces of the single grain Gd123 sample, field-cooled or zero field-cooled, were 40 N and 107 N, respectively.

Spectroscopic Studies on the High-$T_c$ Superconducting $La_2CuO_{4-δ}$ Prepared by Electrochemical Oxidation

  • 박정철;Alain Wattiaux;Jean-Claude Grenier;김동훈;최진호
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.916-922
    • /
    • 1997
  • A superconducting phase La2CuO4+δ (Tc=44 K) has been prepared by electrochemical oxidation which allows the oxygen to intercalat into the La2O2 layers. According to the Cu K-edge X-ray absorption near edge structure spectroscopic analysis, the oxidized phase shows an overall spectra shift of about 0.5 eV to a higher energy region compared to the as sintered one with the occurrence of an additional peak corresponding to the transition to the |1s13dn+1L-14pσ1 > final state, indicating the oxidation of CuO2 layer. From the X-ray photoelectron spectroscopic studies, it is found that the binding energy of La 3d5/2 is significantly shifted from 834.3 eV (as sintered La2CuO4) to 833.6 eV (as electrochemically oxidized La2CuO4+δ), implying that the covalency of the (La-O) bond is decreased due to the oxygen intercalation. The O 1s spectra do not provide an evidence of the superoxide or peroxide, but the oxide (O2-) with the contaminated carbonate (CO32-) based on the peaks at 529 eV and 532 eV, respectively, which is clearly confirmed by the Auger spectroscopic analysis. Oxygen contents determined by iodometric titration (δ=0.07) and thermogravimetry (δ=0.09) show good coincidence each other, also giving an evidence for the "O2-" nature of excess oxygen. From the above results, it is concluded that "O2-" appeared as O 1s peak at 528.6 eV is responsible for superconductivity of La2CuO4+δ.

Transport properties of polycrystalline TaNx thin films prepared by DC reactive magnetron sputtering method

  • Hwang, Tae Jong;Jung, Soon-Gil
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.2
    • /
    • pp.1-5
    • /
    • 2021
  • We have investigated the electrical transport properties of polycrystalline tantalum nitride (TaNx) films. Various compositions of tantalum (nitride) thin films have been deposited on SiO2 substrates by reactive DC magnetron sputtering while changing the ratio of nitrogen partial pressure. The substrate temperature was maintained at 283 K during deposition. X-ray diffraction analyses indicated the presence of α-Ta and β-Ta phases in the Ta film deposited in pure argon atmosphere, while fcc-TaNx phases appeared in the sputtering gas mixture of argon and nitrogen. The N/Ta atomic ratio in the film increased ranging from 0.36 to 1.07 for nitrogen partial pressure from 7 to 20.7%. The superconducting transition temperatures of the TaNx thin films were measured to be greater than 3.86 K with a maximum of 5.34 K. The electrical resistivity of TaNx thin film was in the range of 177-577 𝜇Ωcm and increased with an increase in nitrogen content. The upper critical filed at zero temperature for a TaN0.87 thin film was estimated to exceed 11.3 T, while it showed the lowest Tc = 3.86 K among the measured superconducting TaNx thin films. We try to explain the behavior of the increase of the residual resistivity and the upper critical field for TaNx thin films with the nitrogen content by using the combined role of the intergrain Coulomb effect and disorder effect by grain boundaries.

Investigation of the interaction between spin density wave and superconductivity in two band high temperature iron based superconductor Ba1-xNaxFe2As2

  • Teklie Lissanu Tegegne
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.2
    • /
    • pp.9-18
    • /
    • 2024
  • The current study deals with the possible interplay between superconductivity and spin density wave in two band model high temperature iron based superconductor (FeBSC) Ba1-xNaxFe2As2. The electron and hole bands in the presence of the inter-band interaction between the two bands is becoming a vital issue to deal with the high temperature physics of the iron-based superconductors. In this research work, a model Hamiltonian appropriate for the system under consideration has been developed and the temperature dependent Green's function technique has been employed to get the solution for the equations of motion constructed for the two band model high temperature FeBSC Ba1-xNaxFe2As2. By making use of the decoupling procedure, the equations of motion for the dependence of superconducting transition temperature (TC) on spin density wave(SDW) order parameter (ΔSDW) in the electron intra-band (Δsc(e)) , hole intra-band (Δsc(h)) and inter-band (Δsc(eh)) for Ba1-xNaxFe2As2 have been obtained. We have also obtained the expression for the dependence of spin density wave transition temperature(TSDW) on ΔSDW for Ba1-xNaxFe2As2. Using some plausible approximations and appropriate experimental values for the parameters in the obtained equations of motion, phase diagrams of TC versus Δsc(e), Δsc(h) and Δsc(eh) are plotted. Furthermore, a phase diagram of TSDW versus ΔSDW is plotted for the material under consideration. Finally, using the above mentioned phase diagrams, the interplay between superconductivity and spin density wave in the two band model high temperature FeBSC Ba1-xNaxFe2As2 has been demonstrated to be a very distinct possibility. The agreement of the current finding with the experimental observations is quite commendable.

c-axis Tunneling in Intercalated Bi$_2Sr_2CaCu_2O_{8+x}$ Single Crystals

  • Lee, Min-Hyea;Chang, Hyun-Sik;Doh, Yong-Joo;Lee, Hu-Jong;Lee, Woo;Choy, Jin-Ho
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.260-260
    • /
    • 1999
  • We compared c-axis tunneling characteristics of small stacked intrinsic Josephson junctions prepared on the surface of pristine, I-, and HgI$_2$-intercalated Bi$_2Sr_2CaCu_2O_{8+x}$ (Bi2212) single crystals. The R(T) curves are almost metallic in I-Bi2212 specimens, but semiconducting in HgI$_2$-Bi2212 ones.· The transition temperatures were 82.0 K, 73.0 K, and 76.8 K for pristine Bi2212, I-Bi2212, and HgI2-Bi2212 specimens, respectively, consistent with p-T$_c$ phase diagram. Current-voltage (IV) characteristics of both kinds of specimens show multiple quasiparticle branches with well developed gap features, indicating Josephson coupling is established between neighboring CuO$_2$ planes. The critical current I$_c$ of I-Bi2212 is almost the same as of that of pristine crystals, but I$_c$ is much reduced in Hgl$_2$-Bi2212. In spite of expanded interlayer distances, the interlayer coupling is not significantly affected in I-Bi2212due to holes generated by iodine atoms. The coupling in HgI$_2$-Bi2212 is, however, weakened due to inertness of HgI$_2$ molecules and the expansion of interlayer distance. Relation between the superconducting transition temperature T$_c$ and the critical current I$_c$ seems to contradict Anderson's interlayer-pair-tunneling theory but agree with a modified version of it.

  • PDF

Effect of BSO addition on Cu-O bond of GdBa2Cu3O7-x films with varying thickness probed by extended x-ray absorption fine structure

  • Jeon, H.K.;Lee, J.K.;Yang, D.S.;Kang, W.N.;Kang, B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.1-4
    • /
    • 2016
  • We investigated the relation between the Cu-O bond length and the superconducting properties of $BaSnO_3$ (BSO)-added $GdBa_2Cu_3O_{7-x}$ (GdBCO) thin films by using extended x-ray absorption fine structure (EXAFS) spectroscopy. 4 wt.% $BaSnO_3$ (BSO) added $GdBa_2Cu_3O_{7-x}$ (GdBCO) thin films with varying thickness from $0.2{\mu}m$ to $1.0{\mu}m$ were fabricated by using pulsed laser deposition (PLD) method. The transition temperature ($T_c$) and the residual resistance ratio (RRR) of the GdBCO films increased with increasing thickness up to $0.8{\mu}m$, where the crystalline BSO has the highest peak intensity, and then decreased. This uncommon behaviors of $T_c$ and RRR are likely to be created by the addition of BSO, which may change the ordering of GdBCO atomic bonds. Analysis from the Cu K-edge EXAFS spectroscopy showed an interesting thickness dependence of ordering behavior of BSO-added GdBCO films. It is noticeable that the ordering of Cu-O bond and the transition temperature are found to show opposite behaviors in the thickness dependence. Based on these results, the growth of BSO seemingly have evident effect on the alteration of the local structure of GdBCO film.

Synthesis and Characterization of Large-Area and Highly Crystalline Tungsten Disulphide (WS2) Atomic Layer by Chemical Vapor Deposition

  • Kim, Ji Sun;Kim, Yooseok;Park, Seung-Ho;Ko, Yong Hun;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.361.2-361.2
    • /
    • 2014
  • Transition metal dichalcogenides (MoS2, WS2, WSe2, MoSe2, NbS2, NbSe2, etc.) are layered materials that can exhibit semiconducting, metallic and even superconducting behavior. In the bulk form, the semiconducting phases (MoS2, WS2, WSe2, MoSe2) have an indirect band gap. Recently, these layered systems have attracted a great deal of attention mainly due to their complementary electronic properties when compared to other two-dimensional materials, such as graphene (a semimetal) and boron nitride (an insulator). However, these bulk properties could be significantly modified when the system becomes mono-layered; the indirect band gap becomes direct. Such changes in the band structure when reducing the thickness of a WS2 film have important implications for the development of novel applications, such as valleytronics. In this work, we report for the controlled synthesis of large-area (~cm2) single-, bi-, and few-layer WS2 using a two-step process. WOx thin films were deposited onto a Si/SiO2 substrate, and these films were then sulfurized under vacuum in a second step occurring at high temperatures ($750^{\circ}C$). Furthermore, we have developed an efficient route to transfer these WS2 films onto different substrates, using concentrated HF. WS2 films of different thicknesses have been analyzed by optical microscopy, Raman spectroscopy, and high-resolution transmission electron microscopy.

  • PDF