• Title/Summary/Keyword: superconducting state

Search Result 300, Processing Time 0.018 seconds

Design of Reverse Brayton Cycle Cryocooler System for HTS Cable Cooling (HTS 케이블 냉각용 역브레이튼 사이클 극저온 냉동기 설계에 관한 연구)

  • 박재홍;권용하;김영수;박성출
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.58-65
    • /
    • 2003
  • The high temperature superconductivity(HTS) cable must be cooled below the nitrogen liquefaction temperature to applicate the cable in power generation and transmi-ssion system under the superconducting state. To obtain superconducting state. a reliable cryocooler system is required. Structural and thermal design have been performed to design cryocooler system operated with reverse Brayton cycle using gas neon as refrigerant. This cryocooler system consists of compressor. recuperator. coldbox. control valves and has 1 kW cooling capacity. Heat loss calculation was conducted for the given cryocooler system by considering the conduction and radiation through the multi-layer insulation(MLI) and high vacuum. The results can be summarized as: conduction heat loss is 7 W in valves and access port and radiation heat loss is 18 W through the surface of cryocooler. The full design specifications were discussed and the results were applied to construct in house HTS cable cooling system.

A Decision Method for the Optimal Insertion Resistance of a Superconducting Fault Current Limiter with Reduction of an Asymmetric Fault Current (비대칭 고장전류 저감 기능을 갖는 초전도 한류기의 최적 저항 결정 방안)

  • Kim, Chang-Hwan;Kim, Kyu-Ho;Rhee, Sang-Bong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.57-63
    • /
    • 2015
  • Fault currents characteristics contain decaying DC offset. First cycle peak value of fault currents is higher than steady-state fault current value. These characteristics can affect the operation of protective device. To reduce the asymmetric fault current, the method using a series connection of two hybrid-type Superconducting Fault Current Limiter(SFCL) components, an auxiliary SFCL and a main SFCL, has been proposed. The auxiliary SFCL limits the first half cycle fault current, while main SFCL limits the steady state fault currents. This paper proposed a decision method of the optimal insertion resistance of auxiliary and main SFCL components. To verify the effectiveness of proposed scheme, the various simulations are performed by using Electromagnetic Transient Program(EMTP).

A Electrical Characteristic Simulation and Test for the Steady and Transient State in the 22.9kV HTS Cable Distribution System. (22-9kV배전계통에 대한 초전도케이블의 정상 및 과도상태에 대한 전기적 특성 시험 및 시뮬레이션 결과 검토)

  • Lee, Geun-Joon;Hwnag, Si-Dol;Yang, Byeong-Mo;Lee, Hyun-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2316-2321
    • /
    • 2009
  • With rapid development of world economics, electricity demand in metropolitan area has been increased dramatically. HTS(High Temperature Superconducting) cable is one of most promising technology to solve the bottleneck of electric network. However, HTS cable is not considered as matured technology yet to power system planners because of its different characteristics with conventional metal conductors. This paper suggests the comparison results of HTS cable simulation and experiment on steady state operation, also give the simulation results on transient characteristics of HTS cable components. This results could devote not only to discuss the security of HTS cable operation, but also to design power system oriented HTS cable.

Electronic Structures, Magnetic, and Superconducting Properties of bcc Ni and V-doped Ni (Ni16-xVx)

  • Kim, Bong-Jae;Choi, Hong-Chul;Kim, Kyoo;Min, B.I.
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.128-131
    • /
    • 2008
  • We have investigated the electronic structures and magnetic properties of both undoped and doped bcc Ni using the full-potential linearized augmented plane wave (FLAPW) band method. A ferromagnetic ground state is obtained at the equilibrium volume of bcc Ni. When the system is under strain, the nonmagnetic ground state is stabilized. When the Ni is doped with V, the $Ni_{16-x}V_x$ material loses its magnetic properties when x > 2. We have also discussed the possible superconducting properties of $Ni_{16-x}V_x$.

Superconducting Properties of Ge Substitution for the Bi Site in the 2212 Phase of Bi-Sr-Ca-Cu-O Superconductors (Bi계 산화물 초전도체 2212상에 있어서 Bi 자리에 Ge 치환에 따른 초전도 특성)

  • 신재수;이민수;최봉수;송승용;송기영
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.787-791
    • /
    • 2000
  • Samples with the nominal composition, Bi2-xGexSr2CaCu2O8+$\delta$ (x=0, 0.1, 0.2, 0.3, 0.4, 0.5) were prepared by the solid-state reaction method. We have studied the effect of substitution Ge for Bi and investigated the superconducting properties by changing oxygen content with Ge substitution. It was found that temperature difference, ΔK, between TCon and TCzero was considerably smaller in the samples prepared by the intermediate pressing method than that in the samples by the solid-state reaction method. We found the solubility limit of Ge to the 80 K single phase was around x=0.3. Within the solubility limit, lattice constant c decreased with the increase of x. In the region of the 80K single phase, the onset critical temperature TCon increased and excess oxygen content decreased with increase of x.

  • PDF

A brief review on the recent progress of superconducting nanowire single photon detectors

  • Chong, Yonuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.22-25
    • /
    • 2017
  • Superconducting nanowire single photon detectors (SNSPD) have become the most competent photon-counting devices in wide range of wavelengths. Especially in the communication wavelength (infrared), SNSPD has shown unbeatable superior performance compared to the state-of-art semiconductor single photon detectors. The technology has matured enough for the last decade so that several commercial systems are now almost ready for routine use in general optics experiments. Here we summarize briefly the recent progress in this research field, and hope to motivate further research on the improvement of the device and the system. We cover the basic key concepts, device and system performances, remaining issues and possible further research directions of SNSPD.

Investigation on the loop current in the CICC superconducting magnet (관내연선도체 초전도 자석에서 루프 전류의 형서에 관한 연구)

  • 김석호;정상권
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.69-72
    • /
    • 1999
  • During the fast current and field ramp up experiment with CICC (Cable-In-Conduit Conductor) non-insulated 3 strand superconducting magnet, the unbalanced current distribution associated with the loop current has been obtained directly from the shunt resistor voltage data. To explain the generation of the loop current during the current ramp up, the steady-state three strand loop current model was proposed. This model gives an explanation for the relation between the loop current and the relation between the loop current and the twist geometry of the strands. According to this model, the twist geometry of the strand has significant influence on the generation of the loop current especially in the large superconducting magnet.

  • PDF

The Fabrication of Low Cost High Temperature Superconducting Tape (저비용 고온초전도 선재 제조 연구)

  • 한상철;성태현;한영희;이준성;이영우;정년호;김상준
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.85-88
    • /
    • 2000
  • Cu-free Bi-Sr-Ca-O powder mixtures were screen-printed on Cu tapes and heat-treated at 850-$870^{\circ}C$ for several minutes in air, oxygen, nitrogen and low oxygen pressure. Cu-free precursors were composed of Bi_{x}$SrCaO_{y}$ (x=1.2-2). In order to obtain the optimum heat-treatment condition, we studied on an effect of the precursor composition, the printing thickness and the heat-treatment atmosphere on the superconducting properties of Bi2212 films and the reaction mechanism of their rapid formation. Microstructures and phases of thick films were analyzed by optical microscope and XRD. The electric properties of superconducting films were examined by the four probe method. At heat-treatment temperature, the thick films were in a partially molten state by liquid reaction between CuO in the oxidized copper tape and the precursors which were printed on Cu tapes.

  • PDF

Evaluation of Mg size dependence on superconductivity of MgB2

  • Sinha, B.B.;Jang, S.H.;Chung, K.C.;Kim, J.H.;Dou, S.X.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.39-43
    • /
    • 2013
  • $MgB_2$ bulk samples are synthesized through solid state reaction route using Mg precursors with different particle size by keeping the boron precursor unchanged. Scanning electron microscopy study of the fractured surface for all the samples depicts quite distinct structure depending on the Mg precursor. Big size of Mg precursor resulted in to largely elongated and deep pores while smaller one gave roughly ellipsoidal and shallow pore structure. Influence of the Mg particle size on the grain to grain connectivity reflected in the critical current density value which was greater for samples with smaller Mg precursor. All the synthesized samples undergo a superconducting transition at around 36.5 K irrespective of different Mg precursor particle size.

Propagation Characteristics of Surge Generated due to Internal Arc Discharge in Superconducting Magnet (초전도 마그네트 시스템 내부 아크방전에 의한 발생 서어지의 전파특성)

  • Choi, Byoung-Ju;Suehiro, Junya;Hara, Masanori
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1904-1906
    • /
    • 1996
  • Transient voltage distribution tests are carried out to evaluate effects of a high frequency oscillating voltage generated in a superconducting magnet as a result of the arc discharge extinction. Especially, the effects of temperature and conduction state of the magnet conductor on surge behavior are carefully investigated. Based on the results of simulation tests, it is shown that internal voltage waveforms are influenced by its transmission along the superconducting wire and reflection at the terminal and that attenuation process of the waveforms depends considerably on the conductor resistance which decreases with lowering the temperature.

  • PDF