DOI QR코드

DOI QR Code

Evaluation of Mg size dependence on superconductivity of MgB2

  • Sinha, B.B. (Korea Institute of Material Science) ;
  • Jang, S.H. (Korea Institute of Material Science) ;
  • Chung, K.C. (Korea Institute of Material Science) ;
  • Kim, J.H. (Institute for Superconducting and Electronic Materials, Univ. of Wollongong) ;
  • Dou, S.X. (Institute for Superconducting and Electronic Materials, Univ. of Wollongong)
  • Received : 2013.06.08
  • Accepted : 2013.06.22
  • Published : 2013.06.30

Abstract

$MgB_2$ bulk samples are synthesized through solid state reaction route using Mg precursors with different particle size by keeping the boron precursor unchanged. Scanning electron microscopy study of the fractured surface for all the samples depicts quite distinct structure depending on the Mg precursor. Big size of Mg precursor resulted in to largely elongated and deep pores while smaller one gave roughly ellipsoidal and shallow pore structure. Influence of the Mg particle size on the grain to grain connectivity reflected in the critical current density value which was greater for samples with smaller Mg precursor. All the synthesized samples undergo a superconducting transition at around 36.5 K irrespective of different Mg precursor particle size.

Keywords

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, "Superconductivity at 39K in magnesium diboride," Nature, vol. 410, pp. 63, 2001. https://doi.org/10.1038/35065039
  2. Y. Bugoslavsky, L. F. Cohen, G. K. Perkins, M. Polichetti, T. J. Tate, R. Gwilliam, and A. D. Caplin, "Enhancement of the high magnetic field critical current density of superconducting $MgB_2$ by proton irradiation," Nature (London), vol. 411, pp. 561, 2001. https://doi.org/10.1038/35079024
  3. D. C. Larbalestier, L. D. Cooley, M. O. Rikel, A. A. Polyanskii, J. Jiang, S. Patnaik, X. Y. Cai, D. M. Feldmann, A. Gurevich, and A. A. Squitieri, "Strongly linked current flow in polycrystalline forms of the superconductor $MgB_2$," Nature (London), vol. 410, pp. 186, 2001 https://doi.org/10.1038/35065559
  4. T. C. Shields, K. Kawano, D. Holdom, and J. S. Abell, "Microstructure and superconducting properties of hot isostatically pressed $MgB_2$," Supercond. Sci. Technol., vol. 15, pp. 202, 2002. https://doi.org/10.1088/0953-2048/15/2/303
  5. S. X. Dou, S. Soltanian, J. Horvat, X. L. Wang, S. H. Zhou, M. Ionescu, H. K. Liu, P. Munroe, and M. Tomsic, "Enhancement of the critical current density and flux pinning of $MgB_2$ superconductor by nanoparticle SiC doping," Appl. Phys. Lett., vol. 81, pp. 3419, 2002 https://doi.org/10.1063/1.1517398
  6. J. Wang, Y. Bugoslavsky, A. Berenov, L. Cowey, A. D. Caplin, L. F. Cohen, J. L. MacManus Driscoll, L. D. Cooley, X. Song, and D. C. Larbalestier, "High critical current density and improved irreversibility field in bulk $MgB_2$ made by a scaleable, nanoparticle addition route," Appl. Phys. Lett., vol. 81, pp. 2026, 2002 https://doi.org/10.1063/1.1506184
  7. H. Kumakura, H. Kitaguchi, A. Matsumoto, and H. Hatakeyama, "Upper critical fields of powder-in-tube-processed $MgB_2$/Fe tape conductors," Appl. Phys. Lett., vol. 84, pp. 3669, 2002.
  8. Y. Bugoslavsky, L. F. Cohen, G. K. Perkins, M. Polichetti, T. J. Tate, R. Gwilliam, and A. D. Caplin, "Enhancement of the high magnetic field critical current density of superconducting $MgB_2$ by proton irradiation," Nature (London), vol. 411, pp. 561, 2001 https://doi.org/10.1038/35079024
  9. S. G. Jung, W. K. Seong and W. N. Kang, "Effect of columnar grain boundaries on flux pinning in $MgB_2$ films," J. Appl. Phys., vol. 111, pp. 053906, 2012. https://doi.org/10.1063/1.3689157
  10. A. Serquis, X. Z. Liao, Y. T. Zhu, J. Y. Coulter, J. Y. Huang, J. O. Wills, D. E. Peterson, F. M. Mueller, N. O. Moreno, J. D. Thompson, V. F. Nesterenko and S. S. Indrakanti, "influence of microstructures and crystalline difects on the superconductivity of $MgB_2$," J. Appl. Phys., vol. 92, pp. 351, 2002. https://doi.org/10.1063/1.1479470
  11. D. Wang, Y. Ma, Z. Yu, Z. Gao, X. Zhang, K. Wantanabe and E. Mossang, "Strong influence of precursor powder on the critical current density of Fe-Sheathed $MgB_2$ tapes," Supercond. Sci. Technol., vol. 20, pp. 574, (2007). https://doi.org/10.1088/0953-2048/20/6/015
  12. S. K. Chen, A. Serquis, G. Serrano, K. A. Yates, M. G. Balmire, D. Guthrie, J. Cooper, H. Wang, S. margadonna and J. L. McaManus-Driscoll, "Structural and superconducting property variations with nominal Mg non-stoichiometry in $Mg_xB_2$ and its enhancement of upper critical field," Adv. Funct. Mater., vol. 18, pp. 113, 2008. https://doi.org/10.1002/adfm.200700254
  13. M. Maeda, J.H. Kim, S. Oh, W.X. Li, K. Takase, Y. kuroiwa, S.X. Dou and Y. Takano, "Enhancing the superconducting properties of magnesium diboride without doping," J.Am. Ceram. Soc., 12419, pp. 1-5, 2013.
  14. B.B. Sinha, M.B. Kadam, M. Mudgel, V.P.S. Awana, H. Kishan and S.H. Pawar, "Synthesis and characterization of excess magnesium $MgB_2$ superconductor under inert carbon environment," Physica C, vol. 470, pp. 25-30, 2010. https://doi.org/10.1016/j.physc.2009.09.010

Cited by

  1. Low temperature decomposition of metal borohydride drives autogenous synthesis of MgB2 vol.30, pp.5, 2017, https://doi.org/10.1088/1361-6668/aa62d6
  2. Superconducting properties of MgB2 bulks using the different sizes of Mg & B raw powders vol.22, pp.4, 2020, https://doi.org/10.9714/psac.2020.22.4.020