• 제목/요약/키워드: superconducting state

검색결과 300건 처리시간 0.025초

초전도 에너지 저장 기술에 대한 고찰 (A Consideration on the Superconductivity Energy Storage Technology)

  • 고윤석
    • 한국전자통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.691-698
    • /
    • 2015
  • 최근, 전력산업에서는 지구 온난화에 대비하여 에너지 이용 효율 극대화하기 위한 방안으로 초전도 에너지 저장 장치에 큰 관심을 가지고 있다. 초전도 에너지 저장장치는 비 첨두시에 대량의 전기에너지를 손실 없이 자계 또는 운동 에너지의 형태로 저장하였다가 첨두시에 이를 다시 전기에너지로 변환하여 사용함으로서 피크부하의 균등화 및 순간정전 보상을 실현, 전기 에너지 이용 효율의 극대화를 기할 수 있다. 따라서 본 연구에서는 초전도 에너지 저장기술에 대한 개념, 연구개발 현황 및 그 적용 사례 등을 조사, 분석하여, 전력계통 적용 기반기술을 확립하고자 한다.

A brief review on recent developments of superconducting microwave resonators for quantum device application

  • Chong, Yonuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권4호
    • /
    • pp.40-43
    • /
    • 2014
  • Quantum information processing using superconducting qubit based on Josephson junction has become one of the most promising candidates for possible realization of a quantum computer. In the heart of the qubit circuits, the superconducting microwave resonator plays a key role in quantum operations and measurements, which enables single-photon level microwave quantum optics. During last decade, the coherence time, or the lifetime of the quantum state, of the superconducting qubit has been dramatically improved. Among several technological innovations, the improvement of superconducting microwave resonator's quality has been the main driving force in getting the qubit performance almost ready for elementary quantum computing architecture. In this paper, I will briefly review very recent progresses of the superconducting microwave resonators especially aimed for quantum device applications during the last decade. The progresses have been driven by ingenious circuit design, material improvement, and new measurement techniques. Even a rather radical idea of three-dimensional large resonators have been successfully implemented in a qubit circuit. All those efforts contributed to our understanding of the qubit decoherence mechanism and as a result to the improvement of qubit performance.

Superconductivity on Nb/Si(111) System : scanning tunneling microscopy and spectroscopy study

  • Jeon, Sang-Jun;Suh, Hwan-Soo;Kim, Sung-Min;Kuk, Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.390-390
    • /
    • 2010
  • Superconducting proximity effects of Nb/Si(111) were investigated with scanning tunneling microscopy(STM) and scanning tunneling spectroscopy(STS). A highly-doped($0.002\;{\omega}{\diamondsuit}cm$) Si wafer pieces were used as substrate and Nb source was thermally evaporated onto the atomically clean silicon substrate. The temperature of the silicon sample was held at $600^{\circ}C$ during the niobium deposition. And the sample was annealed at $600^{\circ}C$ for 30 minutes additionally. Volmer-Weber growth mode is preferred in Nb/Si(111) at the sample temperature of $600^{\circ}C$. With proper temperature and annealing time, we can obtain Nb islands of lateral size larger than Nb coherence length(~38nm). And outside of the islands, bare Si($7{\times}7$) reconstructed surface is exposed due to the Volmer-Weber Growth mode. STS measurement at 5.6K showed that Nb island have BCS-like superconducting gap of about 2mV around the Fermi level and the critical temperature is calculated to be as low as 6.1K, which is lower than that of bulk niobium, 9.5K. This reduced value of superconducting energy gap indicates suppression of superconductivity in nanostructures. Moreover, the superconducting state is extended out of the Nb island, over to bare Si surface, due to the superconducting proximity effect. Spatially-resolved scanning tunneling spectroscopy(SR-STS) data taken over the inside and outside of the niobium island shows gradually reduced superconducting gap.

  • PDF

Mixed-state Hall angle Hg-based superconducting thin films

  • Kim, Wan-Seon;Lee, Sung-Ik;Kang, Won-Nam
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.41-44
    • /
    • 2000
  • The mixed-state Hall angle has been measured in Hg-based superconducting thin films as functions of magnetic fields (H) up to 18 T. The temperature dependence of the Hall angle shows a peak (T$^{\ast}$) at low temperature, which is consistent with a crossover point from the thermally activated flux flow (TAFF) to a critical region (CR). At low fields below 10 T, T$^{\ast}$ shifts to low temperature with increasing fields. Interestingly, however, we found that T$^{\ast}$ is independent of fields above 10 T, suggesting unusual vortex state. A physical implication of H - T$^{\ast}$ line will be discussed.

  • PDF

Mixed-state Hall Angle in Hg-based Superconducting Thin Films

  • Kang, Won-Nam;Kim, Wan-Seon;Lee, Sung-Ik
    • Progress in Superconductivity
    • /
    • 제2권1호
    • /
    • pp.39-42
    • /
    • 2000
  • The mixed-state Hall angle has been measured in Hg-based superconducting thin films as functions of magnetic fields (H) up to 18 T. The temperature dependence of the Hall angle shows a peak (T*) at low temperature, which is consistent with a crossover point from the thermally activated flux flow (TAFF) to a critical region (CR). At low fields below 10 T, T* shifts to low temperature with increasing fields. Interestingly, however, we found that T* is independent of fields above 10 T, suggesting unusual vortex state. A physical implication of H-T* line will be discussed.

  • PDF

Fabrication and Test of Persistent Current Switch for HTS Magnet System

  • Hyoungku Kang;Kim, Jung-Ho;Jinho Joo;Yoon, Yong-Soo;Ko, Tae-Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.92-96
    • /
    • 2003
  • This paper deals with the characteristics of persistent current switch (rCS) system fer applied HTS magnet system. To apply the high-Tc superconductor in superconducting machine such as motror, generator, MAGLEV, MRI, and NMR, the study on high-Tc superconducting persistent current mode must be performed. In this experiment, the PCS system consists otd superconducting magnet, PCS and magnet power supply. The superconducting magnet was fabricated by connecting four double pancake coils (DPCs) in series. The PCS was inductive double pancake coil type and heated up by the SUS 303L tape heater. The optimal length of PCS was calculated and thermal quench state of PCS was simulated by using finite element method(FEM) and compared with experimental results. The optimal energy to normalize the PCS was calculated and introduced. Finally, the persistent current was observed with respect to various ramping up rate and magnitude of charging current.

초전도 케이블 계통에서의 켄치 모의 및 해석 (Quench Simulation and Analysis on Superconducting Cable Systems)

  • 김남열;이종범
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권1호
    • /
    • pp.13-21
    • /
    • 2004
  • In the design of superconducting cable systems, quench analysis have to be advanced for applying to a real systems. It is necessary to calculate the current, voltage and resistance during the quench. Simulation program named EMTDC was used to analyze the quench state. Normal zone evaluation and quench development with EMTDC are one of the major features of quench analysis. This paper presents the two kinds of quench control models which are the Switch Control Type and the Fortran Control Type. In case of the quench developing area, the simplicity cable model consist of resistance, inductance and capacitance. The impedance of the pipe type superconducting cable is calculated by numerical analysis method. The resistance and inductance increased during quench. However the variation have an effect on the fault current. The voltage was also developed by resistance and inductance. This paper presents the relationship between the current. voltage, resistance and inductance during quench.

단순화된 자기차폐형 고온초전도한류기 단락 특성 해석 (The Short Circuit Analysis of a Simplified Magnetic Shielding Type High-Tc Superconducting Fault Current Limiter)

  • 이찬주;이승제;장미혜;현옥배;최효상;고태국
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 1999년도 제1회 학술대회논문집(KIASC 1st conference 99)
    • /
    • pp.97-100
    • /
    • 1999
  • Nowadays the high-Tc Superconducting Fault current Limiter (SFCL) is one of the superconducting devices which are very closed to commercialization. The most popular model of High-Tc SFCL is a magnetic shielding type. A superconductor of magnetic shielding type SFCL can be stable in the superconducting state, because there is no contact between the superconductor and the normal conductor. But this model needs large place to set up and in a fault condition, mechanical vibrations may happen to damage the superconductor or total device. In this paper, to solve these problems, the simplified model of magnetic shielding type SFCL was introduced.

  • PDF

Hall Probe를 이용한 초전도선재의 비접촉 임계전류 측정 방법 (Non-contact critical current measurement of superconducting coated conductor using Hall Probe)

  • 김호섭;오상수;이남진;하동우;백승규;고락길;하홍수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 춘계학술대회 논문집
    • /
    • pp.12-12
    • /
    • 2010
  • The hall probe measurement system was used to measure the critical current distribution of superconducting coated conductor. The system consists of reel to reel moving apparatus, 7 array hall probe, a rotary encoder and permanent magnet. The magnetic field profile across the width of superconducting coated conductor using Bean's critical state model was calculated. The effect of various parameters of the formulas on the magnetic field distribution and the effect of shape and size of artificial defects, which were formed on the surface of SmBa2Cu3O7-d(SmBCO) coated conductor using laser marking system, on the hall probe magnetic field signal of the hall probe measurement system was investigated.

  • PDF

BSCCO 고온초전도 전류도입선의 제조 (Fabrication of BSCCO high-Tc superconducting current lead)

  • 하동우;오상수;류강식;장현만
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 춘계학술대회 논문집
    • /
    • pp.252-255
    • /
    • 1996
  • Superconducting current lead is one of the promising applications of the oxide high-Tc superconductors, because they have the advantage of decreasing heat conduction to low temperature region, comparing with a conventional cooper alloy lead. High critical current density is a key factor for the applications such as current lead. (Bi,Pb)$_2$Sr$_2$Ca$_2$Cu$_3$O$\_$x/ high Tc superconductor haute been investigated in terms of critical current density. Bi-2223 superconducting current lead made by CIP and solid state sintering process. Bi-2223 current lead that heat treated at 836$^{\circ}C$ for 240 h in 1/13 P$\_$O$_2$/ had over 150 A/$\textrm{cm}^2$ of critical current density at 77K. We knew that the superconducting properties of tube type current leads were better than rods type of them. And we investigated the relation of Bi-2223 formation and heat treatment condition by XRD and SEM analysis.

  • PDF