• 제목/요약/키워드: superconducting state

검색결과 300건 처리시간 0.019초

분지 특성을 고려한 초전도 전류도입선 설계 (Design of Superconducting Current Leads Considering Bifurcation Characteristic)

  • 설승윤
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제1권2호
    • /
    • pp.37-42
    • /
    • 1999
  • The stability of high-temperature superconducting current leads for cryogenic devices are investigated. By assuming full transition from superconducting state to normal state at a transition temperature, the HTS current at a transition temperature, the HTS current lead shows bifurcation phenomenon. There is a bifurcation shape-factor, HTS leads have three steady state. Below the bifurcation shape-factor, the superconducting current lead is unconditionally stable, because there exists only one steady-factor HTS current lead is conditionally stable depending on the shape and intensity of disturbance.

  • PDF

EMTDC Modeling Method of Resistive type Superconducting Fault Current Limiter

  • Taejeon Huh;Lee, Jaedeuk;Park, Minwon;Yu, In-Keun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.60-65
    • /
    • 2003
  • An effective modeling and simulation scheme of a resistive type Superconducting fault Current Limiter (SFCL) using PSCAD/EMTDC is proposed in this paper. In case of High Temperature Superconducting (HTS) resistive type fault current limiter current limiting is implemented by the ultra-fast transition characteristics from the superconducting (non-resistive) state to the normal (resistive) state by overstepping the critical current density. The states can generally be divided into three sub-states: the superconducting state the quench state and the recovery state respectively. In order to provide alternative application schemes of a resistive type SFCL, an effective modeling and simulation method of the SFCL is necessary. For that purpose, in this study, an actual experiment based component model is developed and applied for the simulation of the real resistive type SFCL using PSCAD/EMTDC. The proposed simulation scheme can be implemented to the grid system readily under various system conditions including sort of faults and the system capacity as well. The simulation results demonstrate the effectiveness of the proposed model and simulation scheme.

초전도 결정의 저온 비열 점프의 자기장 의존성 (Magnetic Field Dependence of Low Temperature Specific Heat Jump in Superconducting Crystal)

  • 김철호
    • 한국재료학회지
    • /
    • 제21권2호
    • /
    • pp.73-77
    • /
    • 2011
  • Specific heat of a crystal is the sum of electronic specific heat, which is the specific heat of conduction electrons, and lattice specific heat, which is the specific heat of the lattice. Since properties such as crystal structure and Debye temperature do not change even in the superconducting state, the lattice specific heat may remain unchanged between the normal and the superconducting state. The difference of specific heat between the normal and superconducting state may be caused only by the electronic specific heat difference between the normal and superconducting states. Critical temperature, at which transition occurs, becomes lower than $T_{c0}$ under the influence of a magnetic field. It is well known that specific heat also changes abruptly at this critical temperature, but magnetic field dependence of jump of specific heat has not yet been developed theoretically. In this paper, specific heat jump of superconducting crystals at low temperature is derived as an explicit function of applied magnetic field H by using the thermodynamic relations of A. C. Rose-Innes and E. H. Rhoderick. The derived specific heat jump is compared with experimental data for superconducting crystals of $MgCNi_3$, $LiTi_2O_4$ and $Nd_{0.5}Ca_{0.5}MnO_3$. Our specific heat jump function well explains the jump up or down phenomena of superconducting crystals.

초전도 배전 케이블 계통에서의 과도상태 해석 (Analysis of Transient State in the Superconducting distribution Cable Systems)

  • 김남열;이종범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.555-557
    • /
    • 2003
  • As electric power transmission systems grow to supply the increasing electric power demand, transmission capacity is larger. but that's really difficult to secure the location for power transmission and distribution to user. The high temperature superconducting(HTS) cable is a method to solve this problem. But for applying to real systems, it needs to investigate the effect of HTS cable. The most important things is the investigation of fault condition. the fault on HTS cable include the quench state. When a fault occur in a circuit, three critical parameters(temperature, current density, magnetic field) exist. when one of these parameters exceeds the critical value, the superconducting becomes normal-conducting. f the cooling power is insufficient to recover the superconducting state, the normal-conducting zone expands. In order to solve these problem, this paper present simulate the quench state considering the over-current and over-voltage in the informal circuit and analyze the quench state.

  • PDF

Superconducting proximity effects in Sb-doped Bi2Se3 topological insulator nanoribbon

  • Park, Sang-Il;Kim, Hong-Seok;Hou, Yasen;Yu, Dong;Doh, Yong-Joo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권4호
    • /
    • pp.13-18
    • /
    • 2019
  • Superconducting junctions of topological insulator (TI) are expected to host Majorana bound state, which is essential for developing topological quantum information devices. In this study, we fabricated Josephson junctions (JJs) made of Sb-doped Bi2Se3 TI nanoribbon and PbIn superconducting electrodes. In the normal state, the axial magnetoresistance data exhibit periodic oscillations, so-called Aharonov-Bohm oscillations, due to a metallic surface state of TI nanoribbon. At low temperature of 1.5 K, the TI JJ reveals the superconducting proximity effects, such as the critical current and multiple Andreev reflections. Under the application of microwave, integer Shapiro steps are observed with satisfying the ac Josephson relation. Our observations indicate that highly-transparent superconducting contacts are formed at the interface between TI nanoribbon and conventional superconductor, which would be useful to explore Majorana bound state in TI.

Development of large bore superconducting magnet for wastewater treatment application

  • Liu, Huiming;Xu, Dong;Shen, Fuzhi;Zhang, Hengcheng;Li, Laifeng
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권1호
    • /
    • pp.13-16
    • /
    • 2017
  • Water issue, especially water pollution, is a serious issue of 21st century. Being an significant technique for securing water resources, superconducting magnetic separation wastewater system was indispensable. A large bore conduction-cooled magnet was custom-tailored for wastewater treatment. The superconducting magnet has been designed, fabricated and tested. The superconducting magnet was composed of NbTi solenoid coils with an effective horizontal warm bore of 400 mm and a maximum central field of 2.56T. The superconducting magnet system was cooled by a two-stage 1.5W 4K GM cryocooler. The NbTi solenoid coils were wound around an aluminum former that is thermally connected to the second stage cold head of the cryocooler through a conductive copper link. The temperature distribution along the conductive link was measured during the cool-down process as well as at steady state. The magnet was cooled down to 4.8K in approximately 65 hours. The test of the magnetic field and quench analysis has been performed to verify the safe operation for the magnet system. Experimental results show that the superconducting magnet reached the designed magnetic performance.

초전도자석의 영구전류모드 운전시 초기자장감쇠 (The Initial Magnetic Field Decay of the Superconducting Magnet in the Persistent Current Mode)

  • 배준환;심기덕;권영길
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제2권1호
    • /
    • pp.31-34
    • /
    • 2000
  • this paper deals with the initial magnetic field decay for a large scale superconducting magnet e.g. NMR/MRI magnet. The high resolution image can not be obained during the periods of the initial field decay. It is known that all superconducting materials have the property of diamagnetism. This diamagnetism is usually explained with the concept of screening current. We assumed that the existence of the screening currebt. we assumed that the existence of the screening current makes the current distribution in the superconducting wire non-uniform. And the initial magnetic field decay is caused steady current state in the view of its pattern. The initial magnetic field decay is caused by the change of the current distribution between the energizing state and persistent current mode. in this paper the theoretical analysis for the current distributions has been introduced for each state. The experiments have been carried out to verify transport currents in order to veperiments, it small at the higher transport current.

  • PDF

Superconducting transition in the Presence of Magnetic order in BaFe1.89Co0.11As2

  • Kim, K.W.;Wolf, T.;Bernhard, C.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권4호
    • /
    • pp.21-24
    • /
    • 2015
  • We report optical spectra of underdoped $BaFe_{1.89}Co_{0.11}As_2$ that hosts both of magnetic and superconducting orders. The temperature dependent evolution of optical conductivity shows finger prints of the magnetic order and the s-wave nature of the superconducting gaps. Careful inspection on the superconducting state reveals that the two orders compete but coexist in the ground state.

AE센서를 이용한 초전도자석의 퀜치 검출기법 (The quench detection technique of the superconducting magnet using an AE sensor)

  • 김호민;이방욱;오일성;이해근;유키카즈 이와사
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.1748-1750
    • /
    • 2004
  • This paper deals with the detection method of the Quench phenomenon for superconducting magnet using the Acoustic Emission (AE) sensor. AE sensor is the elements, which is used to change the Acoustic signal to the voltage value. This signal may be used to detect whether the superconducting magnet has been at the Quench state or not. Recently, the development of the Quench detection technique, which is the using voltage and current signals, fiber-optic sensor, and so on, for the superconducting applications is widely studying. This method for the Quench detection of the superconducting magnet is also studying at some kinds of institute in Japan and the united state. Because of the large-scale superconducting magnet like International Thermonuclear Experimental Reactor(ITER) is charged a lot of energy, when the Quench phenomenon is being at the superconducting magnet it is happen to the problem of the protection for the applications. In this paper, we concluded that the Quench detection was possible when the mechanical stress by means of the local heat is generated at the part of inside superconducting magnets.

  • PDF