• 제목/요약/키워드: superconducting fault current limiter (SFCL)

검색결과 377건 처리시간 0.023초

A Study on SFCL with IGBT Based DC Circuit Breaker in Electric Power Grid

  • Bae, SunHo;Kim, Hongrae;Park, Jung-Wook;Lee, Soo Hyoung
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1805-1811
    • /
    • 2017
  • Recently, DC systems are considered as efficient electric power systems for renewable energy based clean power generators. This discloses several critical issues that are required to be considered before the installation of the DC systems. First of all, voltage/current switching stress, which is aggravated by large fault current, might damage DC circuit breakers. This problem can be simply solved by applying a superconducting fault current limiter (SFCL) as proposed in this study. It allows a simple use of insulated-gate bipolar transistors (IGBTs) as a DC circuit breaker. To evaluate the proposed resistive type SFCL application to the DC circuit breaker, a DC distribution system is composed of the practical line impedances from the real distribution system in Do-gok area, Korea. Also, to reflect the distributed generation (DG) effects, several DC-to-DC converters are applied. The locations and sizes of the DGs are optimally selected according to the results of previous studies on DG optimization. The performance of the resistive type SFCL applied DC circuit breaker is verified by a time-domain simulation based case study using the power systems computer aided design/electromagnetic transients including DC (PSCAD/ EMTDC(R)).

배전계통 사고시 투입저항 크기가 OCR트립 시간에 미치는 영향 (Effect of inserting resistance's magnitude on OCR trip time in a short-circuit of distribution system)

  • 안재민;김재철;임성훈;김진석;문종필
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.154-155
    • /
    • 2007
  • Increase of fault current due to larger power demand has increased the possibility of the breakdown of the power system. To protect the power system effectively from the larger fault current, several countermeasures have been proposed. Among them, the superconducting fault current limiter (SFCL) has been expected as one of the most effective solutions. In this paper, the fault current limiter, which consists of a ideal switch as a trigger part and the limiter as the limiting part, has been applied into the distribution system. From the analysis for the fault current limiting operation of SFCL, the inserting resistance's magnitude has been confirmed to affect OCR trip time in a short-circuit of distribution system.

  • PDF

일체화된 삼상 자속구속형 고온초전도 전류제한기의 동작모드 분석 (Analysis of Operational Modes in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current Limiting)

  • 박충렬;두호익;최효상;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.186-187
    • /
    • 2006
  • The development of SFCL (Superconducting Fault Current Limiter) is getting more important as the power demand is increased rapidly. Up to now, several kinds of SFCL have been proposed and it is expected that they will be applied to appropriate position considering their own properties. Amongst those proposed SFCL, flux-lock type SFCL using the magnetic cancelation for current limiting has the advantages of overcoming the technical difficulties that other types of SFCLs have. In this paper, the integrated three-phase flux-lock type SFCL was fabricated and its operational modes were investigated through the short circuit tests. The operational mode were to divided into four mode according to the variation of the currents flowing into the secondary winding connected the superconducting elements and the speed of the quench generation. It was expected that the improvement of current limiting characteristics of the SFCL could be possible through control of the operational mode.

  • PDF

초전도 사고전류제한기를 설치한 독립배전계통의 고장상태해석 (Fault simulation of distributed power system with superconducting fault current limiter)

  • 이상진;오윤상;배준한;고태국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.122-124
    • /
    • 1995
  • Electrical transmission and distribution networks must withstand an occasionally abnormal condition such as a fault, with prejudicial consequences for the line, transformers or generators. And the improvement of reliability and quality of the delivered power from an electric utility motivates the development of new technologies in power applications. As a part of these studies, the usefulness and utility of a superconduction fault current limiter(SFCL) are shown. The SFCL is applied to 22.9KV three-phase power system and performed short circuit studies. The verified quench characteristic of SFCL is adopted for fault simulation and the results are compared with those of system which have not SFCL.

  • PDF

전자기력을 고려한 24kV급 초전도 한류기용 전류리드의 최적화 배열방안 (Optimal Arrangement of Current Leads for 24kV class SFCL to Minimize Electromagnetic Force)

  • 김주형;송정빈;황승재;김광록;김호민;김혜림;현옥배;고태국;이해근
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권3호
    • /
    • pp.62-66
    • /
    • 2007
  • Electromagnetic forces (Attractive and repulsive force), interacting between current leads show different tendency according to the arrangement of current leads on the top flange of the cryostat and the distance of each lead. Especially in case of high-current electric power devices or high-field magnets, optimal arrangement of current leads becomes one of the safety issues to be considered for minimizing the electromagnetic for ce acting on them. In this paper, we suggest an optimal arrangement method with three pairs of current leads for a 24kV class 650A superconducting fault current limiter (SFCL) system which has a probability of unpredicted fault currents(i.e, 20kA).

배전급 초전도 한류기 개발을 위한 Bi-2212 초전도 한류소자의 사고전류 제한 특성 (Fault Current Limitation Characteristics of the Bi-2212 Bulk Coil for Distribution-class Superconducting Fault Current Limiters)

  • 심정욱;이해근;임성우;김혜림;현옥배;박권배;이방욱;오일성;김호민
    • 전기학회논문지
    • /
    • 제56권2호
    • /
    • pp.277-281
    • /
    • 2007
  • We investigated fault current limitation characteristics of the resistive superconducting fault current limiter (SFCL) which consisted of a Bi-2212 bulk coil and a shunt coil. The Bi-2212 bulk coil and the shunt coil were connected in parallel. The Bi-2212 bulk coil was placed inside the shunt coil to induce field-assisted quench. The fault test was conducted at an input voltage of $200V_{rms}$ and fault current of $12kA_{rms}\;and\;25kA_{rms}$. The fault conditions were asymmetric and symmetric, and the fault period was 5 cycles. The test results show that the SFCL successfully limited the fault current of $12kA_{rms}\;and\;25kA_{rms}$ to below $5.5{\sim}6.9kA_{peak}\;within\;0.64{\sim}2.17$ msec after the fault occurred. Limitation was faster under symmetric fault test condition due to the larger change rate of current. We concluded that the speed of fault current limitation was determined by the speed of current rise rather than the amplitude of a short circuit current. These results show that the Bi-2212 bulk coil is suitable for distribution-class SFCLS.

Interrupting characteristics of the transformer superconducting fault current limiter

  • Hwang, S.H.;Choi, H.W.;Jeong, I.S.;Choi, H.S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권4호
    • /
    • pp.40-44
    • /
    • 2017
  • This paper analyzed the fault current limiting characteristics of the previously proposed transformer superconducting fault current limiter (TSFCL) interruption system according to its transformer type. The TSFCL interruption system is an interruption technology that combines a TSFCL, which uses a transformer and a superconductor, and a mechanical DC circuit breaker. This technology first limits the fault current using the inductance of the transformer winding and the quench characteristics of the superconductor. The limited fault current is then interrupted by a mechanical DC circuit breaker. The magnitude of the limited fault current can be controlled by the quench resistance of the superconductor in the TSFCL and the turns ratio of the transformer. When the fault current is controlled using a superconductor, additional costs are incurred due to the cooling vessel and the length of the superconductor. When the fault current is controlled using step-up and step-down transformers, however, it is possible to control the fault current more economically than using the superconductor. The TSFCL interruption system was designed using PSCAD/EMTDC-based analysis software, and the fault current limiting characteristics according to the type of the transformer were analyzed. The turns ratios of the step-up and step-down transformers were set to 1:2 and 2:1. The results were compared with those of a transformer with a 1:1 turns ratio.

Simulation for current limiting characteristics of the resistive and inductive SFCL with line-to-ground fault

  • Choi, Hyo-Sang;Hwang, Si-Dole;Kim, Sang-Joon;Han, Byoung-Sung
    • Progress in Superconductivity
    • /
    • 제1권1호
    • /
    • pp.73-80
    • /
    • 1999
  • We investigated the current limiting characteristics of resistive and inductive SFCLs with 100 $\Omega$ of impedance for line-to-ground faults in the 154 kV transmission system. The fault simulation at the phase angles $0^{\circ}$, $^45{\circ}$, and $90^{\circ}$ showed that the resistive SFCL limits the fault current less than 17 kA without any DC component after one half cycle from the instant of the fault. On the other hand, the inductive SFCL suppresses the current below 14 kA, but with 5 kA of DC component which decreases to zero in 5 cycles. We concluded that the inductive SFCL has higher performance in current limiting effect, but the resistive SFCL was better from the viewpoint of less DC components.

  • PDF

자속구속형 초전도전류제한기의 권선비 변화에 따른 전류제한 및 전압강하 보상 특성 (Current Limiting and Voltage Sag Suppressing Characteristics of Flux-lock Type SFCL According to Variations of Turn Number's Ratio)

  • 한태희;임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제24권5호
    • /
    • pp.410-415
    • /
    • 2011
  • In this paper, we investigated the fault current limiting and the load voltage sag suppressing characteristics of the flux-lock type SFCL, designed with the additive polarity winding, according to the variations of turn number's ratio and the comparative analysis between the resistive type and the flux-lock type SFCLs were performed as well. From the analysis for the short-circuit tests, the flux-lock type SFCL designed with the larger turn number's ratio was shown to perform more effective fault current limiting and load voltage sag suppressing operations compared to the flux-lock type SFCL designed with the lower turn number's ratio through the fast quench occurrence of the high-$T_C$ superconducting (HTSC) element comprising the flux-lock type SFCL. In addition, the recovery time of the flux-lock type SFCL after the fault removed could be confirmed to be shorter in case of the flux-lock type SFCL designed with the lower turn number ratio.

$2{\times}3$구조의 매트릭스형 초전도 한류기의 트리거 코일 및 션트 저항에 따른 특성 (Characteristics of Matrix Type SFCL with $2{\times}3$ Array According to the Trigger Coil and Shunt Resistance)

  • 정병익;최효상
    • 전기학회논문지P
    • /
    • 제58권1호
    • /
    • pp.85-89
    • /
    • 2009
  • We investigated the quench characteristics in accordance with increase of turns number of trigger coil and shunt resistance of matrix-type superconducting fault current limiter (SFCL) with $2{\times}3$ array. The matrix-type SFCL consists of the trigger part to apply magnetic field and the current-limiting part to limit fault current. The fault current limiting characteristics according to the increase of magnetic field and applied voltage were nearly same. This is because the application of magnetic field hasn't an affect on total impedance of the SFCL. When turns number of a reactor increased, the voltage difference between two superconducting units in the current-limiting part according was decreased. The resistance difference generated in two superconducting units was also decreased. Therefore, we confirmed that the differences of the critical behaviors between superconducting units were reduced by application of magnetic field. By this results, we could decide the optimum turns number of reactor to apply magnetic field.