• 제목/요약/키워드: superconducting distribution cable

검색결과 47건 처리시간 0.023초

22.9kV 중성점 다중접지계통에 CD형 초전도케이블을 적용한 경우의 지락전류변화 (Ground Fault Current Variation of 22.9kV Multi Neutral Grounded Distribution System with CD Type Superconducting Cable)

  • 이종배;황시돌;손송호;이근준
    • 전기학회논문지
    • /
    • 제56권6호
    • /
    • pp.993-999
    • /
    • 2007
  • This paper discusses the effects of CD type superconducting cable operation in 22.9kV multi neutral grounded distribution system during L-G fault and counterplans to power system protection. In case of using the 3-phase CD-type superconducting cable, the inductance of superconducting cable system would be decreased due to the current of shield part of superconducting cable, which is opposite direction and nearly equal value with respect to main superconductor. However, when the shield circuit system is operated in shorted state, shield current decreases faulted ground current and give effects to power system protection scheme. This study examines the phenomena of single line to ground fault case in above mentioned system using the EMTDC program and discusses the right operation method of superconducting shield.

피치길이와 결선방향에 따른 다층 고온초전도 전력케이블의 전류분류 분석 (Analysis of Current Distribution of Multi-Layer HTSC Power Cable dut to Pitch length and winding direction)

  • 이종화;임성훈;고석철;박충렬;한병성;황시돌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1133-1135
    • /
    • 2004
  • Superconducting transmission power cable is one of interesting parts in power application using high temperature superconducting wire. One of important parameters in high-temperature superconducting (HTSC) cable design is transport current distribution because it is related with current transmission capacity and ac loss. In this paper, the transport current and magnetic field distributions at conducting layers were investigated through the analysis of the equivalent circuit for HTSC power cable with shield layer. The transport current distribution due to the pitch length and winding direction was improved in case of HTSC power cable with shield layer.

  • PDF

Analysis on Current Distribution of Four-Layer HTSC Power Transmission Cable with a Shield Layer

  • Lim Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권3호
    • /
    • pp.308-312
    • /
    • 2006
  • The inductance difference between conducting layers of high-Tc superconducting (HTSC) power transmission cable causes the current sharing of each conducting layer to be unequal, which decreases the current transmission capacity of HTSC power cable. Therefore, the design for even current sharing in HTSC power transmission cable is required. In this paper, we investigated the current distribution of HTSC power cable with a shield layer dependent on the pitch length and the winding direction of each layer. To analyze the effect of the shield layer on the current sharing of the conducting layers of HTSC power cable, the current distribution of HTSC power cable without a shield layer was compared with the case of HTSC power cable with a shield layer. It could be found through the analysis from the computer simulations that the shield layer of HTSC power cable could be contributed to the improvement of current distribution of conducting layers at the specific pitch length and the winding direction of conducting layer. The result and discussion for the current distribution calculated for HTSC power transmission cable with a shield layer were presented and compared with the cable without a shield layer.

초전도다중케이블에서의 축방향자계 (Effects of Longitudinal Field in a Multiply-Twisted Superconducting Cable)

  • 차귀수;심정욱;박종현;나완수;이지광;김동훈;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.101-103
    • /
    • 1996
  • Multiply-twist cable is used for a large capacity superconducting cable because it is helpful to reduce AC losses and to increase transport current. In a multiply-twisted cable, the axis of a strand does not coincide with that of cable. Therefore, the longitudinal field is generated by the transport current. The longitudinal field changes the current distribution in the strand and generates additional AC loss. This paper calculates the longitudinal field that is applied to a strand in the multiply-twisted cable. Current distribution of a strand in the cable is also presented. 2nd level superconducting cable is chosen as an analysis model, whose current capacity is 2000A. Calculation result shows the longitudinal field cannot be neglected in low field machines such as superconducting transformer.

  • PDF

초전도 배전 케이블 계통에서의 과도상태 해석 (Analysis of Transient State in the Superconducting distribution Cable Systems)

  • 김남열;이종범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.555-557
    • /
    • 2003
  • As electric power transmission systems grow to supply the increasing electric power demand, transmission capacity is larger. but that's really difficult to secure the location for power transmission and distribution to user. The high temperature superconducting(HTS) cable is a method to solve this problem. But for applying to real systems, it needs to investigate the effect of HTS cable. The most important things is the investigation of fault condition. the fault on HTS cable include the quench state. When a fault occur in a circuit, three critical parameters(temperature, current density, magnetic field) exist. when one of these parameters exceeds the critical value, the superconducting becomes normal-conducting. f the cooling power is insufficient to recover the superconducting state, the normal-conducting zone expands. In order to solve these problem, this paper present simulate the quench state considering the over-current and over-voltage in the informal circuit and analyze the quench state.

  • PDF

차폐층을 갖는 다층고온초전도 전력케이블의 전류분류 분석 (Analysis of Current Distribution of Multi-Layer HTSC Power Cable with a Shield Layer)

  • 이종화;임성훈;고석철;박충렬;한병성;황시돌
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.535-538
    • /
    • 2004
  • Superconducting transmission power cable is one of interesting parts in power application using high temperature superconducting wire. One of important parameters in high-temperature superconduting (HTSC) cable design is transport current distribution because it is related with current transmission capacity and AC loss. In this paper, the transport current distribution at conducting layers was investigated through the analysis of the equivalent circuit for HTSC power cable with shield layer and compared with the case of without shield layer. The transport current distribution due to the pitch lenght was improved in the case of HTSC power cable with shield layer from the analysis.

  • PDF

국내계통 보호시스템을 고려한 22.9kV 초전도케이블/한류기 설계사양 제안 (Specifications of 22.9kV HTS cables and FCLs considering protection systems in Korean power distribution system)

  • 이승렬;박종영;윤재영;이병준;양병모
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권3호
    • /
    • pp.50-54
    • /
    • 2009
  • In Korea, 22.9kV 50MVA HTS (High Temperature Superconducting) cables and 630A/3kA hybrid SFCLs (Superconducting Fault Current Limiters) have been or are being developed by LS Cable, LS Industrial System, and Korea Electric Power Research Institute. They will be installed at Icheon 154kV Substation for real-power-distribution-system operation in 2010. This paper proposes specification of current limiting resistor/reactor for the SFCL and fault current condition of the HTS cable for applying the superconducting devices to Korean power distribution system, from the viewpoint of power system protection.

차폐층을 고려한 고온초전도 전력 케이블의 전류분류 해석 (Analysis of Current Distribution of HTSC Power Cable Considering Shield Layer)

  • 이종화;임성훈;고석철;박충렬;한병성;황시돌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.12-14
    • /
    • 2004
  • Superconducting transmission power cable is one of interesting parts in power application using high temperature superconducting wire. One of import ant parameters in high-temperature superconduting (HTSC) cable design is transport current distribution because it is related with current transmission capacity and AC loss. In this paper, the transport current distribution at conducting layers was investigated through the analysis of the equivalent circuit for HTSC power cable with shield layer and compared with the case of without shield layer. The transport current distribution due to of the contact resistance and the pitch was improved in the case of HTSC power cable with shield layer from the analysis.

  • PDF

교류용초전도연면중(交流用超電導撚綿中)의 각소선간전류분류(各素線間電流分流) (Current distribution among the strands in superconducting multistrands)

  • 오풍환;조천직수;대구보인;귀두행생
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.765-767
    • /
    • 1992
  • A superconducting multistranded cable is used to realize high current capacity for AC use. The critical current value of the cable to be less than the simple summation of individual critical current value of each strand. The causes for such a degradation of the critical current value have not been revealed. This paper investigates the current distribution in multistrands before and after their quenching by using 7-strand superconducting cable. The following experimental results are derived. (1)The quenching is initiated at one strand in the cable, (2)The current in the quenched strand is transferred into the other strands, (3) An avalanche of quenching is induced among the strands, (4)The central strand is quenched finally among the strands.

  • PDF

케이블 길이에 따른 층별 전류분류를 고려한 다층 고온초전도 송전케이블의 교류손실계산 (AC Boss of multi-layer HTS Power transmission cable considering the current distribution by cable length variation)

  • 이지광;이승욱;차귀수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.810-812
    • /
    • 2000
  • Superconducting transmission cable is one of interesting part in power application using high temperature superconducting wire as transformer. One important parameter in HTS cable design is transport current distribution because it is related with current transmission capacity and loss. In this paper, we calculate inductance and current distribution for 4-layer cable using the electric circuit model and compare calculation results of transport current losses by monoblock model and Norris equation

  • PDF