• Title/Summary/Keyword: supercomputer

Search Result 143, Processing Time 0.029 seconds

Sensitivity Analysis of Wind-Wave Growth Parameter during Typhoon Season in Summer for Developing an Integrated Global/Regional/Coastal Wave Prediction System (전지구·지역·국지연안 통합 파랑예측시스템 개발을 위한 여름철 태풍시기 풍파성장 파라미터 민감도 분석)

  • Oh, Youjung;Oh, Sang Meong;Chang, Pil-Hun;Kang, KiRyong;Moon, Il-Ju
    • Ocean and Polar Research
    • /
    • v.43 no.3
    • /
    • pp.179-192
    • /
    • 2021
  • In this study, an integrated wave model from global to coastal scales was developed to improve the operational wave prediction performance of the Korean Meteorological Administration (KMA). In this system, the wave model was upgraded to the WaveWatch III version 6.07 with the improved parameterization of the source term. Considering the increased resolution of the wind input field and the introduction of the high-performance KMA 5th Supercomputer, the spatial resolution of global and regional wave models has been doubled compared to the operational model. The physical processes and coefficients of the wave model were optimized for the current KMA global atmospheric forecasting system, the Korean Integrated Model (KIM), which is being operated since April 2020. Based on the sensitivity experiment results, the wind-wave growth parameter (βmax) for the global wave model was determined to be 1.33 with the lowest root mean square errors (RMSE). The value of βmax showed the lowest error when applied to regional/coastal wave models for the period of the typhoon season when strong winds occur. Applying the new system to the case of August 2020, the RMSE for the 48-hour significant wave height prediction was reduced by 13.4 to 17.7% compared to the existing KMA operating model. The new integrated wave prediction system plans to replace the KMA operating model after long-term verification.

Legal Institutional Improvement for Activating National Supercomputing Ecosystem (국가슈퍼컴퓨팅 생태계 활성화를 위한 법제도 개선방안)

  • Huh, Taesang;Jung, Yonghwan;Koh, Myoungju
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.2
    • /
    • pp.641-651
    • /
    • 2021
  • Supercomputers have played an important role in various fields such as science, industry, national security and solutions for social issues, and their demand is increasing significantly as their use is strengthened in areas using big data and AI. Recently, competition for global exascale system development is accelerating based on various architectures, and the era of exascale computing is expected to come in the near future. However, the foundation of the domestic supercomputing ecosystem was lost due to the decline of the server industry in the past, and although the related law was enacted to supplement and foster it, it has not been able to perform its function smoothly. Therefore, this article examines the problems in the current legal system through the analysis of the relevant legal system and the status of the supercomputing ecosystem, and suggests improvements so that the relevant legal system, which can accommodate the reinforcement of the role of the government·national center·professional center, support for industries, promotion of commercialization of research results, and flexibility of government promotion policies, can prepare the basis for the promotion of the supercomputing R&D project.

The Improvement of Computational Efficiency in KIM by an Adaptive Time-step Algorithm (적응시간 간격 알고리즘을 이용한 KIM의 계산 효율성 개선)

  • Hyun Nam;Suk-Jin Choi
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.331-341
    • /
    • 2023
  • A numerical forecasting models usually predict future states by performing time integration considering fixed static time-steps. A time-step that is too long can cause model instability and failure of forecast simulation, and a time-step that is too short can cause unnecessary time integration calculations. Thus, in numerical models, the time-step size can be determined by the CFL (Courant-Friedrichs-Lewy)-condition, and this condition acts as a necessary condition for finding a numerical solution. A static time-step is defined as using the same fixed time-step for time integration. On the other hand, applying a different time-step for each integration while guaranteeing the stability of the solution in time advancement is called an adaptive time-step. The adaptive time-step algorithm is a method of presenting the maximum usable time-step suitable for each integration based on the CFL-condition for the adaptive time-step. In this paper, the adaptive time-step algorithm is applied for the Korean Integrated Model (KIM) to determine suitable parameters used for the adaptive time-step algorithm through the monthly verifications of 10-day simulations (during January and July 2017) at about 12 km resolution. By comparing the numerical results obtained by applying the 25 second static time-step to KIM in Supercomputer 5 (Nurion), it shows similar results in terms of forecast quality, presents the maximum available time-step for each integration, and improves the calculation efficiency by reducing the number of total time integrations by 19%.

A Study on the Implementation Method for the Achievement of the Korea High-Performance Computing Innovation Strategy

  • Choi, Youn Keun;Koh, Myoungju;Jung, Youg Hwan;Hur, YoungJu;Lee, Yeonjae;On, Noori;Hahm, Jaegyoon
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.76-85
    • /
    • 2022
  • At the 8th National High-Performance Computing (HPC) Committee convened in 2021, the "National High-Performance Computing Innovation Strategy (draft) for the 4th Industrial Revolution Era" was deliberated and the original draft was approved. In this proposal, the Ministry of Science and ICT in KOREA announced three major plans and nine detailed projects with the vision of "Realizing the 4th industrial revolution quantum jumping by leaping into a high-performance computing powerhouse." Thereby the most important policy about national mid-term and long-term HPC development was established and called the HPC innovation strategy (hereinafter "the innovation strategy"). The three plans of the innovation strategy proposed by the government are: Strategic HPC infrastructure expansion; Secure source technologies; and Activate innovative HPC utilization. Each of the detailed projects has to be executed nationally and strategically. In this paper, we propose a strategy for the implementation of two items ("Strategic HPC infrastructure expansion" and "activate innovative HPC utilization") among these detailed plans.

Design of MAHA Supercomputing System for Human Genome Analysis (대용량 유전체 분석을 위한 고성능 컴퓨팅 시스템 MAHA)

  • Kim, Young Woo;Kim, Hong-Yeon;Bae, Seungjo;Kim, Hag-Young;Woo, Young-Choon;Park, Soo-Jun;Choi, Wan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.2
    • /
    • pp.81-90
    • /
    • 2013
  • During the past decade, many changes and attempts have been tried and are continued developing new technologies in the computing area. The brick wall in computing area, especially power wall, changes computing paradigm from computing hardwares including processor and system architecture to programming environment and application usage. The high performance computing (HPC) area, especially, has been experienced catastrophic changes, and it is now considered as a key to the national competitiveness. In the late 2000's, many leading countries rushed to develop Exascale supercomputing systems, and as a results tens of PetaFLOPS system are prevalent now. In Korea, ICT is well developed and Korea is considered as a one of leading countries in the world, but not for supercomputing area. In this paper, we describe architecture design of MAHA supercomputing system which is aimed to develop 300 TeraFLOPS system for bio-informatics applications like human genome analysis and protein-protein docking. MAHA supercomputing system is consists of four major parts - computing hardware, file system, system software and bio-applications. MAHA supercomputing system is designed to utilize heterogeneous computing accelerators (co-processors like GPGPUs and MICs) to get more performance/$, performance/area, and performance/power. To provide high speed data movement and large capacity, MAHA file system is designed to have asymmetric cluster architecture, and consists of metadata server, data server, and client file system on top of SSD and MAID storage servers. MAHA system softwares are designed to provide user-friendliness and easy-to-use based on integrated system management component - like Bio Workflow management, Integrated Cluster management and Heterogeneous Resource management. MAHA supercomputing system was first installed in Dec., 2011. The theoretical performance of MAHA system was 50 TeraFLOPS and measured performance of 30.3 TeraFLOPS with 32 computing nodes. MAHA system will be upgraded to have 100 TeraFLOPS performance at Jan., 2013.

The Technology Trend of Interconnection Network for High Performance Computing (고성능 컴퓨팅을 위한 인터커넥션 네트워크 기술 동향)

  • Cho, Hyeyoung;Jun, Tae Joon;Han, Jiyong
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.9-15
    • /
    • 2017
  • With the development of semiconductor integration technology, central processing units and storage devices have been miniaturized and performance has been rapidly developed, interconnection network technology is becoming a more important factor in terms of the performance of high performance computing system. In this paper, we analyze the trend of interconnection network technology used in high performance computing. Interconnect technology, which is the most widely used in the Supercomputer Top 500(2017. 06.), is an Infiniband. Recently, Ethernet is the second highest share after InfiniBand due to the emergence of 40/100Gbps Gigabit Ethernet technology. Gigabit Ethernet, where latency performance is lower than InfiniBand, is preferred in cost-effective medium-sized data centers. In addition, top-end HPC systems that demand high performance are devoting themselves from Ethernet and InfiniBand technologies and are attempting to maximize system performance by introducing their own interconnect networks. In the future, high-performance interconnects are expected to utilize silicon-based optical communication technology to exchange data with light.

Present-Day Climate of the Korean Peninsula Centered Northern East Asia Based on CMIP5 Historical Scenario Using Fine-Resolution WRF (CMIP5 Historical 시나리오에 근거한 WRF를 이용한 한반도 중심의 동북아시아 상세기후)

  • Ahn, Joong-Bae;Hong, Ja-Young;Seo, Myung-Suk
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.527-538
    • /
    • 2013
  • In this study, climate over Korea based on the Historical scenario induced by HadGEM2-AO is simulated by WRF. For this purpose, a system that can be used be for numerical integration over the Far East Asian area of the center of the Korean Peninsula with 12.5 km-horizontal resolution was set-up at "Haebit", the early portion of KMA Supercomputer Unit-3. Using the system, the downscaling experiments were conducted for the period 1979-2010. The simulated results of HadGEM2-AO and WRF are presented in terms of 2 m-temperature and precipitation during boreal summer and winter of Historical for the period 1981~2005, compared with observation. As for the mean 2 m-temperature, the general patterns of HadGEM2-AO and WRF are similar with observation although WRF showed lower values than observation due to the systematic bias. WRF reproduced a feature of the terrain-following characteristics reasonably well owing to the increased horizontal resolution. Both of the models simulated the observed precipitation pattern for DJF than JJA reasonably, while the rainfall over the Korean Peninsula in JJA is less than observation. HadGEM2-AO in DJF 2 m-temperature and JJA precipitation has warm and dry biases over the Korean Peninsula, respectively. WRF showed cold bias over JJA 2 m-temperature and wet bias over DJF precipitation. The larger bias in WRF was attributed to the addition of HadGEM2-AO's bias to WRF's systematic bias. Spatial correlation analysis revealed that HadGEM2-AO and WRF had above 0.8 correlation coefficients except for JJA precipitation. In the EOF analysis, both models results explained basically same phase changes and variation as observation. Despite the difference in mean and bias fields for both models, the variabilities of the two models were almost similar with observation in many respects, implying that the downscaled results can be effectively used for the study of regional climate around the Korean Peninsula.

A STUDY OF VON-MISES YIELD STRENGTH AFTER MANDIBULAR SAGITTAL SPLIT RAMUS OSTEOTOMY (하악지시상분할골절단술 시행 후 von-Miese 항복강도에 대한 유한요소법적 연구)

  • Yoon, Ok-Byung;Kim, Yeo-Gab
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.3
    • /
    • pp.196-204
    • /
    • 2002
  • For the study of its stability when the screw has been fixed after sagittal split ramus osteotomy(SSRO) of the mandible, the methods of screw arrangement are classified into two types, triangular and straight. The angles of screws to the bone surface are classified as perpendicular arrangements, the $60^{\circ}$ anterioinferior screw, known as triangular, and the most posterior screw, called straight arrangement, thus there are four types. The finite element method model has been made by using a three dimensional calculator and a supercomputer. The load directions are to the anterior teeth, premolar region, and molar region, and the bite force is 1 Kgf to each region. The distribution of stress, the von-Mises yield strength, and safety of margin refer to the total sum of transformed energy have been studied by comparison with each other. The following conclusion has been researched : 1. When shear stress is compared, in the triangular arrangement in the form of "ㄱ", the anterosuperior screw is seen at contributing to the support of the bone fragment. In the straight arrangement, substantial stress is seen to be concentrated on the most posterior angled screw. 2. When the von-Mises yield strength is compared, it seemed that the stress concentration on the angled anteroinferior screw is higher, it shows a higher possibility of fracture than any other screw. In the straight arrangement, stress appeared to be concentrated on the most posteriorly angled screw. 3. When the safety margins of the transfomed energy are compared, the energy conduction is much greater in the case of the angled screw than in the case of the perpendicular screw. The triangular arrangement in the form of "ㄱ" shows a superior clinical sign to that of the straight arrangement. Judging from the above results, when the screw fixation is made after SSRO in practical clinical cases, two screws should be inserted in the superior border of mandibular ramus and a third screw of mandibular inferior border should be inserted in the form of triangular. All screws on the bony surface should be placed perpendicularly-$90^{\circ}$ angles apparently best promote bony support and stability.

A Reservation based Network Resource Provisioning Testbed Using the Integrated Resource Management System (통합자원관리시스템을 이용한 예약 기반의 네트워크 자원 할당 테스트베드 망)

  • Lim, Huhn-Kuk;Moon, Jeong-Hoon;Kong, Jong-Uk;Han, Jang-Soo;Cha, Young-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1450-1458
    • /
    • 2011
  • The HPcN (Hybrid & high Performance Convergence Network) in research networks means environment which can provide both computing resource such as supercomputer, cluster and network resource to application researchers in the field of medical, bio, aerospace and e-science. The most representative research network in Korea, KREONET has been developing following technologies through the HERO (Hybrid Networking project for research oriented infrastructure) from 200S. First, we have constructed and deployed a control plane technology which can provide a connection oriented network dynamically. Second, the integrated resource management system technology has been developing for reservation and allocation of both computing and network resources, whenever users want to utilize them. In this paper, a testbed network is presented, which is possible to reserve and allocate network resource using the integrated resource management system. We reserve network resource through GNSI (Grid Network Service Interface) messages between GRS (Global Resource Scheduler) and NRM (Network Resource Manager) and allocate network resource through GUNI (Grid User Network Interface) messages between the NRM (network resource manager) and routers, based on reservation information provided from a user on the web portal. It is confirmed that GUNI interface messages are delivered from the NRM to each router at the starting of reservation time and traffic is transmitted through LSP allocated by the NRM.

A Survey of Weather Forecasting Software and Installation of Low Resolution of the GloSea6 Software (기상예측시스템 소프트웨어 조사 및 GloSea6 소프트웨어 저해상도 설치방법 구현)

  • Chung, Sung-Wook;Lee, Chang-Hyun;Jeong, Dong-Min;Yeom, Gi-Hun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.5
    • /
    • pp.349-361
    • /
    • 2021
  • With the development of technology and the advancement of weather forecasting models and prediction methods, higher performance weather forecasting software has been developed, and more precise and accurate weather forecasting is possible by performing software using supercomputers. In this paper, the weather forecast model used by six major countries is investigated and its characteristics are analyzed, and the Korea Meteorological Administration currently uses it in collaboration with the UK Meteorological Administration since 2012 and explains the GloSea However, the existing GloSea was conducted only on the Meteorological Administration supercomputer, making it difficult for various researchers to perform detailed research by specialized field. Therefore, this paper aims to establish a standard experimental environment in which the low-resolution version based on GloSea6 currently used in Korea can be used in local systems and test it to present the localization of low-resolution GloSea6 that can be performed in the laboratory environment. In other words, in this paper, the local portability of low-resolution Globe6 is verified by establishing a basic architecture consisting of a user terminal-calculation server-repository server and performing execution tests of the software.