• Title/Summary/Keyword: super-critical $CO_2$

Search Result 29, Processing Time 0.029 seconds

Optimization of wire construction from several 2G HTS tapes

  • Kumarov, D.R.;Sotnikov, D.;Scherbakov, V.I.;Mankevich, A.;Molodyk, A.;Sim, Kideok;Hwang, Soon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.24-28
    • /
    • 2019
  • Despite the second generation HTS tapes (2G HTS tape) have limits in critical current value, scientific and electric devices require more current density day after day. These requirements are realized by using different superconducting wires that consist of 2G HTS tapes designed in various combinations. Authors of this paper have developed the numerical model for estimation of total critical current in the superconducting wire and critical current in each 2G HTS tape placed in this superconducting wire. The current drop in six 2G HTS tapes having different constructions was analyzed. The result of this research is the decrease of critical current up to 25 % for the stack of tapes and up to 5 % for the parallel tapes in the same plane. In addition, what was also made is the estimation of the current distribution by length for six 25 m 2G HTS tapes in different constructions and determination of current deviation by length of the wire.

Rotordynamic Performance Analysis and Operation Test of a Power Turbine for the Super critical CO2 Cycle Application (초임계 CO2 발전용 파워 터빈의 회전체 동역학 해석 및 구동 시험)

  • Lee, Donghyun;Kim, Byungok;Sun, Kyungho;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • This paper presents a rotordynamic analysis and the operation of a power turbine applied to a 250 kW super-critical $CO_2$ cycle. The power turbine consists of a turbine wheel and a shaft supported by two fluid film bearings. We use a tilting pad bearing for the power turbine owing to the high speed operation, and employ copper backing pads to improve the thermal management of the bearing. We conduct a rotordynamic analysis based on the design parameters of the power turbine. The dynamic coefficients of the tilting pad bearings were calculated based on the iso-thermal lubrication theory and turbine wheel was modeled as equivalent inertia. The predicted Cambell diagram showed that there are two critical speeds, namely the conical and bending critical speeds under the rated speed. However, the unbalance response prediction showed that vibration levels are controlled within 10 mm for all speed ranges owing to the high damping ratio of the modes. Additionally, the predicted logarithmic decrement indicates that there is no unstable mode. The power turbine uses compressed air at a temperature of $250^{\circ}C$ in its operation, and we monitor the shaft vibration and temperature of the lubricant during the test. In the steady state, we record a temperature rise of $40^{\circ}C$ between the inlet and outlet lubricant and the measured shaft vibration shows good agreement with the prediction.

Binder Removal by Supercritical $CO_2$ in Powder Injection Molded WC-Co (WC-Co계 분말사출성형에서 초임계$CO_2$에 의한 결합제 제거)

  • 김용호;임종성;이윤우;김소나;박종구
    • Journal of Powder Materials
    • /
    • v.8 no.2
    • /
    • pp.91-97
    • /
    • 2001
  • The conventional debinding process in metal injection molding is very long time-consuming and unfriendly environmental method. Especially, in such a case of injection molded parts from hard and fine metal powder, such as WC-Co, an extremely long period of time is necessary in the conventional slow binder removal process. On the other hand, supercritical debinding is thought to be the effective method which is appropriate to eliminate the aforementioned inconvenience in the prior art. The supercritical fluid has high diffusivity and density, it can penetrate quickly into the inside of the green metal bodies, and extract the binder. In this paper, super-critical debinding is compared with wicking debinding process. Wax-based binder system is used in this study. The binder removal rate in supercritical $CO_2$ have been measured at $65^{\circ}C$, 75$^{\circ}C$ in the pressure range from 20 MPa to 28 MPa. Pores and cracks in silver bodies after sintering were observed using SEM When the super-critical $CO_2$ debinding was carried out at 75$^{\circ}C$, almost all the wax (about 70 wt% of binder) was removed in 2 hours under 28 MPa and 2.5 hours under 25 MPa.

  • PDF

High-Temperature Stability Evaluation of Various Surface Treated Layers of Materials for Ultra-Super Critical Power Plants (초초임계압 발전용 소재의 표면처리층의 고온 안정성 평가)

  • Ryu, K.H.;Song, T.K.;Lee, J.H.;Kim, G.S.;Lee, S.H.;Urm, K.W.
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.329-335
    • /
    • 2006
  • In order to improve thermal efficiency of the fossil fuel power plants, we need to develop advanced materials with superior durability in the ultra-super critical state, which requires surface modifications for superior surface properties. In this study, we coated the Incoloy 901 and 12-17Cr steels for turbine buckets and valves with nitriding, boriding, and $Cr_3C_2-NiCr$ HVOF(high velocity oxygen flow) method. Then the samples were heat treated at $650^{\circ}C$ for 100 hours in vacuum. We analyzed the evolution behaviors of nitrides such as $Fe_3N,\;Fe_4N$, and CrN and borides such as FeB and $Fe_2B$ with XRD and SEM/EDS by comparing hardnesses and compositions of the coated layers before and after the heat treatments.

Development of a correlation on the convective heat transfer of supercritical pressure $CO_2$ vertically upward flowing in a circular tube (원형관에서 수직상향유동 초임계압 $CO_2$의 대류열전달 상관식 개발)

  • Kang, Deog-Ji;Kim, Hwan-Yeol;Bae, Yun-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.292-295
    • /
    • 2008
  • In a SCWR (SuperCritical pressure Water cooled Reactor), the coolant temperature initially at below the pseudo-critical temperature at the bottom of a reactor core increases as the coolant flows upward through the sub-channels of the fuel assemblies, and it finally becomes higher than the pseudo-critical temperature when it leaves the reactor core. At certain conditions, heat transfer deterioration occurs near the pseudo-critical temperature and it may cause a drastic rise of the fuel surface temperature resulting a fuel failure. Therefore, an accurate estimation of the heat transfer coefficient is very important for the thermal-hydraulic design of a reactor core. An experiment on heat transfer to the vertically upward flowing $CO_2$ at a supercritical pressure in a circular tube were performed at KAERI. The internal diameter of the test section is 6.32 mm, which corresponds to the hydraulic diameter of a sub-channel in the conceptional design proposed by KAERI. The test range of the mass flux is 285 to 1200 kg/m$^2$s and the maximum heat flux is 170 kW/m$^2$. The inlet pressure is maintained at 8.12 MPa, which is 1.1 times the critical pressure. A new correlation, which covers both the normal and deterioration heat transfer regimes was proposed and compared with the estimations by exiting correlations.

  • PDF

Experimental Study on the Performance Characteristics of a CO2 Air-conditioning System for Vehicles (자동차용 CO2 에어컨 시스템의 성능 특성에 관한 실험적 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.18-24
    • /
    • 2015
  • In this study, a $CO_2$ air-conditioning system was investigated with different types of electrically driven compressors, parallel flow type gas cooler, four-pass type evaporator, internal heat exchanger integrated with accumulator, and electric expansion valve. The experimental study was conducted under various operating conditions (ie., different rotational compressor speeds, air inlet temperatures and air velocity coming into heat exchangers). The experimental results showed the cooling capacity was 3.5kW at $35^{\circ}C$ ambient temperature when the vehicle was idle (ie., the worst condition for cooling off the gas cooler). In terms of performance effect of the compressor, the e-RP model had a slightly better cooling capacity and coefficient of performance than the e-GR model under the same test conditions. An experimental equation for optimum cooling-performance control was also suggested based on the results. A high-pressure control algorithm for the super critical cycle was determined to achieve both maximum cooling performance and efficient energy consumption. The results from the experimental equation coincided with those of previous experimental studies.

Experimental Effects of Aucklandiae Radix and Cyperi Rhizoma Extract on Chronic Stress in Rats (목향과 향부자 추출물이 흰쥐의 만성 스트레스에 미치는 실험적 효과)

  • Choi, Chan Hun;Hong, Jun Yeong;Jeong, Hyun Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.2
    • /
    • pp.54-58
    • /
    • 2022
  • This study aimed to investigate the anti-stress function of Aucklandiae Radix (AR) and Cyperi Rhizoma (CR). The essential oils used in the experiment were extracted from AR and CR using Steam Distillation Extraction and Super critical CO2 extraction. To observe the effects of sample administration, we measured feed intake, leukocytes, red blood cells, hemoglobin, platelets, serum serotonin content, immobility time, climbing time, and swimming time in mice subjected to chronic restraint stress as behavioral changes. The average body weight of all experimental groups increased than the average body weight of the control group. The immobility and climbing times of experimental groups A and B administered with supercritical extraction samples were shorter than those of the other experimental groups and the control group, and the swimming time was longer. The serotonin content in the blood of all experimental groups decreased compared to the normal group, and the serotonin content of the control group was increased. The authors suggest that Korean herbal medicines AR and CR may be utilized as anti-stress flavoring agents based on the above results.

Compensation Logics of Controller in Korean Standard Super Critical Once Through Boiler

  • Kim, Eun-Gee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.65.2-65
    • /
    • 2001
  • There are not only lots of controllers such as UMC(Unit Master Controller), BMC(Boiler Master Controller), Fuel Flow controller, Air flow controller, Feed water flow controller, S/H R/H Temperature controller and so on, but also compensation controller such as BTU compensator, Fuel/Water ratio controller and O2 Co controller to take automatic control in the super critical once through boiler. It is important to make complete automation of boiler to use the compensation controller like BTU compensator. For example, In case of some boiler condition, operator has to change combustion parameter for changing the coal, on the contrary BTU compensator can calculate set value of the fuel flow and reset the fuel flow demand by itself. This paper shows us the logic and instruction regarding compensation controller of boiler that can be operated automatically.

  • PDF

Thermal Analysis and Temperature Measurement of Tilting Pad Bearings Supporting a Power Turbine for the Supercritical CO2 Cycle Application (초임계 CO2 발전용 파워터빈을 지지하는 틸팅패드 베어링의 열윤활 해석 및 패드 온도 측정)

  • Lee, Donghyun;Kim, Byungok;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.34 no.2
    • /
    • pp.43-48
    • /
    • 2018
  • This paper presents the thermohydrodynamic analysis of tilting journal pad bearings supporting a power turbine rotor applied to a 250 kW super-critical $CO_2$ cycle. In the analysis, the generalized Reynolds equation and 3D energy equation are solved to predict oil film temperature and the 3D heat conduction equation is solved for pad temperature. The power turbine rotor is supported by two tilting pad bearings consisting of five pads with an oil supply block between the pads. Copper backing pads with higher thermal conductivity compared to steel backing pads are adopted to improve thermal management. The predicted maximum pad temperature is around $55^{\circ}C$ which is approximately $15^{\circ}C$ higher than oil supply temperature. In addition, the predicted minimum film thickness is 50 mm at a rotating speed of 5,000 rpm. These results indicate that there is no issue in the thermal behavior of the bearing. An operation test is performed with a power turbine module consisting of a power turbine, a reduction gear and a generator. Thermocouples are installed at the 75% position from the leading edge of the pad to monitor pad temperature. The power turbine uses compressed air at a temperature of $250^{\circ}C$ in its operation. The steady state pad temperatures measured in the test show good agreement with the predicted temperatures.