• Title/Summary/Keyword: super fiber

Search Result 108, Processing Time 0.024 seconds

Enhanced adhesion properties of conductive super-hydrophobic surfaces by using zirco-aluminate coupling agent

  • Park, Myung-Hyun;Ha, Ji-Hwan;Song, Hyeonjun;Bae, Joonwon;Park, Sung-Hoon
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.387-392
    • /
    • 2018
  • Various technical approaches and concepts have been proposed to develop conductive super-hydrophobic (SH) surfaces. However, most of these approaches are not usable in practical applications because of insufficient adhesion and cost issues. Additionally, durability and uniformity issues are still in need of improvement. The goal of this research is to produce a large-area conductive SH surface with improved adhesion performance and uniformity. To this end, carbon nanotubes (CNT) with a high aspect ratio and elastomeric polymer were utilized as a conductive filler and matrix, respectively, to form a coating layer. Additionally, nanoscale silica particles were utilized for stable implementation of the conductive SH surface. To improve the adhesion properties between the SH coating layer and substrate, pretreatment of the substrate was conducted by utilizing both wet and dry etching processes to create specific organic functional groups on the substrate. Following pretreatment of the surface, a zirco-aluminate coupling agent was utilized to enhance adhesion properties between the substrate and the SH coating layer. Raman spectroscopy revealed that adhesion was greatly improved by the formation of a chemical bond between the substrate and the SH coating layer at an optimal coupling agent concentration. The developed conductive SH coating attained a high electromagnetic interference (EMI) shielding effectiveness, which is advantageous in self-cleaning EMI shielding applications.

Experimental investigation of reinforced concrete columns retrofitted with polyester sheet

  • Chang, Chunho;Kim, Sung Jig;Park, Dongbyung;Choi, Sunghun
    • Earthquakes and Structures
    • /
    • v.6 no.3
    • /
    • pp.237-250
    • /
    • 2014
  • This paper experimentally investigates the seismic performance of RC columns retrofitted with Super Reinforcement with Flexibility (SRF), which is a polyester fiber reinforced polymer. A total of three specimens with a scale factor of 1/2 were constructed and tested in order to assess the structural behavior of the retrofitted RC columns. One specimen was a non-seismically designed column without any retrofit, while others were retrofitted with either one or two layers of the polyester belt with urethane as the adhesive. Static cyclic testing with a constant axial load was conducted to assess the seismic performance of the retrofitted RC columns. It is concluded that the SRF retrofitting method increases the strength and ductility of the RC columns and can also impact on the failure mode of the columns.

Dyeing of Ultra High Molecular Weight Polyethylene Fiber Using Anthraquinoid Super-hydrophobic Navy Dyes (안트라퀴논계 초소수성 네이비 염료를 이용한 초고분자량 폴리에틸렌 섬유의 염색)

  • Kim, Taekyeong;Ma, Heejung
    • Textile Coloration and Finishing
    • /
    • v.31 no.2
    • /
    • pp.98-106
    • /
    • 2019
  • The dyeability and fastness properties of super-hydrophobic navy dyes having different length of alkyl groups were investigated on ultra high molecular weight polyethylene fabrics. Those dyes exhibited strong color strength in the wavelength of mainly 550~650nm, which meant that they were navy color. From the results accomplished under various dyeing conditions, it can be concluded that those dyes have higher affinity on the fibers at $130^{\circ}C$ than at the lower dyeing temperature. Considering processing time and thermal damage of the fibers, one hour is good enough to obtain full strength of color. Maximum color strength was obtained at 2~3%owf of pure dyes. Except for the rub fastness under dry condition, all fastness such as to washing and light showed as good as of 4~5 ratings.

A Walking Vibration Sensing System using a Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 보행 진동 측정 시스템에 관한 연구)

  • Kim, Jaeki;Yeom, Sanghun;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.22-27
    • /
    • 2017
  • In this paper, a walking vibration sensing system (WVS system) using a Fiber Bragg Grating sensor (FBG sensor) is proposed. The seismic part of the FBG sensor was redesigned for sensitivity enhancement. The external excitation was assumed to be the walking cycle of an adult male. The FBG seismic sensor was redesigned using CATIA and ABAQUS such that the sensor's first mode natural frequency is 3.5 Hz (which is a value near the external excitation frequency). Compared with existing walking vibration sensing systems, this newly created system improves sensitivity 15 times. It is also suitable for intrusion detection applications.

A Study on the Design and Production of Hopper Lens Type WDM (Hopper lens type WDM 설계 및 제작 연구)

  • Kim, Kyung Bok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.160-165
    • /
    • 2016
  • The rapidly developing applications of optical fiber in sensors, sensor system and super high speed optical communication have begun to produce tangible demands for optical coupler and connected WDM. we have designed and made Hopper type WDM (national patent NO:10-1502954). The Hopper type WDM is bi-directional $1{\times}3$ WDM of asymmetry Butt coupling for super high speed optical communication. The Hopper type WDM is used central wavelength of each 850nm,1300nm,1550nm. The Hopper type WDM has an excellent merits which the existing WDM and also it has an excellent signal of super high speed and economic in made. The characteristic of Hopper type WDM is superior in ave 0.02-0.03dB as compared with $1{\times}3$ optical coupler to excess loss. Especially, we can expect the utilization of super high speed optical MUX and also can be developed as the high-sensibility signal detected system in using optical sensor system parts.

A Study on Super Resolution Algorithm to Improve Spatial Resolution of Optical Signals (광신호의 공간 해상도 향상을 위한 초 분해능 알고리즘 연구)

  • Lee, Byung-Jin;Yu, Bong-Guk;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.71-77
    • /
    • 2018
  • The optical time domain reflectometer (OTDR) is the most widely used method to monitor problems with currently installed optical fibers. The OTDR is an instrument designed to test the FTTx network and evaluates the physical properties of the fiber, such as transmission loss and connection loss. It is important to improve the spatial resolution in order to accurately grasp the optical path problems by using the OTDR. When the pulse width is less than twice the distance between the two reflectors, the signals reflected from the two reflectors are reflected without overlap, so that the reflected signal can be distinguished. However, when the pulse width is larger than twice the distance between the two reflectors, so that the reflected signal can not be distinguished. In order to overcome these limitations, this paper proposed a method of improving spatial resolution by applying a super resolution algorithm. As a result of the simulation, the resolution is improved when the super resolution algorithm is applied, and the event interval can be analyzed more precisely.

Study on the Mechanical Properties of Polyketone Fiber according to Coating Process for Technical Textile (산업용 폴리케톤 섬유의 코팅 가공에 따른 기계적 물성에 관한 연구)

  • Kim, Sang Yong;Jeon, Jae Woo;Kwak, Dong Sub;Lee, Won;Lee, Deuk Jin;Whang, Sun Dong;Do, Sung Jun
    • Textile Coloration and Finishing
    • /
    • v.27 no.4
    • /
    • pp.334-339
    • /
    • 2015
  • Polyketone fiber, a newly developed high strength fiber, has a tenacity and modulus similar to the paramid fiber, and can be used for reinforcing mechanical rubber goods(MRG), such as tires, hoses, and technical textiles. In addition, aliphatic polyketone, which has excellent strength, modulus, chemical stability and reasonable price, is being developed only in South Korea. It will be expected for replacement of super fiber such as aramids and increasing the technical textile market share. This paper surveys the mechanical properties of polyketone fiber yarn for technical textiles. For this purpose, two kinds of yarns are prepared, mechanical properties of coated and uncoated polyketone yarns such as tensile strength, elongation and modulus were examined before and after weather resistance test(temperature $60^{\circ}C$, humidity 60%, amount of power $0.67w/m^2$). The differences of mechanical properties between uncoated and coated yarns for high functional technical textiles and composite materials are estimated through this study.

Study on the Mechanical Properties of Polyketone Fiber according to Dyeing and Finishing Process (폴리케톤 섬유의 염색 및 후가공 처리에 따른 기계적 물성에 관한 연구)

  • Kim, Sang Yong;Kim, Kyung Min;Lee, Won;Lee, Deuk Jin;Whang, Sun Dong;Yang, Sung Yong
    • Textile Coloration and Finishing
    • /
    • v.29 no.2
    • /
    • pp.97-103
    • /
    • 2017
  • Polyketone fiber, a newly developed high strength fiber, has a tenacity and modulus similar to the p-aramid fiber, and can be used for reinforcing mechanical rubber goods(MRG), such as tires, hoses, and technical textiles. It will be expected for replacement of super fiber such as aramids and increasing the technical textile market share. This paper surveys the mechanical properties of polyketone fiber for technical textiles. For this purpose, dyed polyketone fabric is prepared, mechanical properties of coated and uncoated polyketone fabrics such as tensile strength, elongation and tear strength were examined before and after weather resistance test(temperature $63{\pm}3^{\circ}C$, humidity 60%, amount of power $0.35w/m^2$). The differences of mechanical properties between uncoated and coated fabrics for high functional technical textiles and composite materials are estimated through this study. The UV-stability of polyketone fabric showed obvious improvement after coating. After 168h(7day) of UV exposure, the coated fabric showed less deterioration in mechanical properties with the retained tensile strength and elongation at break greater than 22 and 17% of the uncoated polyketone fabrics values, respectively.

Development of process monitoring system in ELID grinding (ELID 연삭에서 가공 상태 감시 시스템 개발)

  • 서영호;김화영;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.599-602
    • /
    • 2000
  • A new dressing technique with utilizes electrolytic phenomenon for realizing effective mirror surface grindings with metal bonded super-abrasive wheels is called “Electrolytic In-process Dressing Grinding”. This technique enabled metal bonded micro-grain wheels, such as micro-grain cast iron fiber bonded wheels, to be used for mirror surface finish processes effectively. But this technique requires a lot of knowledge and experience to perform. And the condition of dressing is variable according to the time. Therefore adaptation of Monitoring and Control technique is needed.

  • PDF