• Title/Summary/Keyword: super elements

Search Result 153, Processing Time 0.023 seconds

Free transverse vibration of shear deformable super-elliptical plates

  • Altekin, Murat
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.307-331
    • /
    • 2017
  • Free transverse vibration of shear deformable super-elliptical plates with uniform thickness was studied based on Mindlin plate theory using finite element method. Quadrilateral isoparametric elements were used in the paper. Sensitivity analysis was made to determine the influence of the thickness, the aspect ratio, and the shape of the plate on the natural frequency. Accuracy of the results computed in the current study was validated by comparing them with the solutions available in the literature. The results reveal that the frequencies of clamped super-elliptical plates lie in the range bounded by elliptical and rectangular plates irrespective of the aspect ratio, and furthermore, the frequency decreases if the super-elliptical power increases. A similar trend was observed for simply supported plates with high aspect ratio. The free vibration response for the first and the second symmetric-antisymmetric (SA) modes were found to be different for high aspect ratio. The results reveal that using insufficient number of degrees of freedom results in finding a totally different relation between the super-elliptical power and the frequency.

Finite Element Stress Analysis of Coil Springs using a Multi-level Substructuring Method I : Spring Super Element (다단계 부분구조법을 이용한 코일스프링의 유한 요소 응력해석 I : 스프링 슈퍼요소)

  • Kim, Jin-Young;Huh, Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.138-150
    • /
    • 2000
  • This study is concerned with computerized multi-level substructuring methods and stress analysis of coil springs. The purpose of substructuring methods is to reduce computing time and capacity of computer memory by multiple level reduction of the degrees of freedom in large size problems which are modeled by three dimensional continuum finite elements. In this paper, a super element has been developed for stress analysis of coil springs. The spring super element developed has been examined with tension and torsion simulation of cylindrical bars for demonstrating its validity. The result shows that the super element enhances the computing efficiency while it does not affect the accuracy of the results and it is ready for application to the coil spring analysis.

  • PDF

Hybrid displacement FE formulations including a hole

  • Leconte, Nicolas;Langrand, Bertrand;Markiewicz, Eric
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.439-451
    • /
    • 2009
  • The paper deals with the problem related to the modelling of riveted assemblies for crashworthiness analysis of full-scale complete aircraft structures. Comparisons between experiments and standard FE computations on high-energy accidental situations onto aluminium riveted panels show that macroscopic plastic strains are not sufficiently localised in the FE shells connected to rivet elements. The main reason is related to the structural embrittlement caused by holes, which are currently not modelled. Consequently, standard displacement FE models do not succeed in initialising and propagating the rupture in sheet metal plates and along rivet rows as observed in the experiments. However, the literature survey show that it is possible to formulate super-elements featuring defects that both give accurate singular strain fields and are compatible with standard displacement finite elements. These super-elements can be related to the displacement model of the hybrid-Trefftz principle of the finite element method, which is a kind of domain decomposition method. A feature of hybrid-Trefftz finite elements is that they are mainly used for elastic computations. It is thus proposed to investigate the possibility of formulating a hybrid displacement finite element, including the effects of a hole, dedicated to crashworthiness analysis of full-scale aeronautic structures.

Numerical simulation of soil-structure interaction in framed and shear-wall structures

  • Dalili, M.;Alkarni, A.;Noorzaei, J.;Paknahad, M.;Jaafar, M.S.;Huat, B.B.K.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.1
    • /
    • pp.17-34
    • /
    • 2011
  • This paper deals with the modeling of the plane frame structure-foundation-soil system. The superstructure along with the foundation beam is idealized as beam bending elements. The soil medium near the foundation beam with stress concentrated is idealized by isoparametric finite elements, and infinite elements are used to represent the far field of the soil media. This paper presents the modeling of shear wall structure-foundation and soil system using the optimal membrane triangular, super and conventional finite elements. Particularly, an alternative formulation is presented for the optimal triangular elements aimed at reducing the programming effort and computational cost. The proposed model is applied to a plane frame-combined footing-soil system. It is shown that the total settlement obtained from the non-linear interactive analysis is about 1.3 to 1.4 times that of the non-interactive analysis. Furthermore, the proposed model was found to be efficient in simulating the shear wall-foundation-soil system, being able to yield results that are similar to those obtained by the conventional finite element method.

Use of Super Elements for Efficient Analysis of Flat Plate Structures (플랫플레이트 구조물의 효율적인 해석을 위한 수퍼요소의 활용)

  • 김현수;이승재;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.439-450
    • /
    • 2003
  • Flat plate system has been adopted in many buildings constructed recently because of the advantage of reduced floor heights to meet the economical and architectural demands. Structural engineers commonly use the effective beam width model(EBWM) in practical engineering for the analysis of flat plate structures. However, in many cases, when it is difficult to use the EBWM, it is necessary to use a refined finite element model for an accurate analysis. But it would take significant amount of computational time and memory if the entire building structure was subdivided with finer meshes. An efficient analytical method is proposed in this study to obtain accurate results in significantly reduced computational time. The proposed method employs super elements developed using the matrix condensation technique and fictitious beams are used in the development of super elements to enforce the compatibility at the interfaces of super elements. The stiffness degradation of flat plate system considered in the EBWM was taken into account by reducing the elastic modulus of floor slabs in this study. Static and dynamic analyses of example structures were performed and the efficiency and accuracy of the proposed method were verified by comparing the results with those of the refined finite element model and the EBWM.

A Fundamental Study on Applying BIM to Power Manage System of Super Tall Buildings (초고층 건축물 전력관리 시스템에 BIM 적용을 위한 기초적 연구)

  • Jo, Chan-Won;Kwon, Soon-Ho;Lee, Woon-Jae;Roh, Tae-Im;Ock, Jong-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.2
    • /
    • pp.140-148
    • /
    • 2012
  • This study aims to provide power monitoring system for super tall buildings with 3D BIM (Building Information Modeling) technology. In order to realize this subject, standard specifications for BIM objects and attributes were studied through analyzing processes and elements of electrical utilities for power management systems applied for super tall buildings. These standard BIM specifications could be used by designers, contractors and facility operators, and thus could be helpful to realize BIM information sharing between multiple disciplines and construction phases. And further study has been suggested to develop standard specification and applications from this study.

Study on the Design of DC-DC Converter for Super Junction MOSFET Battery Charger of Electric Vehicles (전기자동차 배터리 충전을 위한 DC - DC컨버터용 Super Junction MOSFET 설계에 관한 연구)

  • Kim, Bum June;Hong, Young Sung;Sim, Gwan Pil;Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.587-590
    • /
    • 2013
  • Release competition and development of eco-friendly vehicles have been conducted violently also automaker, it will be a high growth industry of the charger and battery, which is the driving source of the motor of an electric vehicle. Reduces the on-resistance power elements DC - DC converter for battery charger for electric vehicles, must minimize switching losses. Should have a low on-resistance power than existing products. Compare the Super Junction MOSFET and Planar MOSFET, As a result, super junction MOSFET improve on about 87.4% on-state voltage drop performance than planar MOSFET.

An Application of the Super Flowing Concrete in Site (초유동 콘크리트의 현장시공)

  • 권영호;이상수;김동석;김진근;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.402-407
    • /
    • 1996
  • In this paper, we described the basic elements(flowability, fillingability, elapsed time, pumpability, no-vibrating effects, and etc.) required for the application and quality control of the super flowing concrete (SFC) in construction site. Also, after investigating characteristics of SFC through various experiments, SFC were placed in the reaction wall of large scale structural laboratory in Deawoo Insititute of Construction Technology. As the result of this project, the developed SFC showed high flowability and self-filingability good enough for the requirement. Furthermore, quality control and assurance of the no-vibrating concrete in actual site was verified by various testing.

  • PDF

Super convergent laminated composite beam element for lateral stability analysis

  • Kim, Nam-Il;Choi, Dong-Ho
    • Steel and Composite Structures
    • /
    • v.15 no.2
    • /
    • pp.175-202
    • /
    • 2013
  • The super convergent laminated composite beam element is newly derived for the lateral stability analysis. For this, a theoretical model of the laminated composite beams is developed based on the first-order shear deformation beam theory. The present laminated beam takes into account the transverse shear and the restrained warping induced shear deformation. The second-order coupling torque resulting from the geometric nonlinearity is rigorously derived. From the principle of minimum total potential energy, the stability equations and force-displacement relationships are derived and the explicit expressions for the displacement parameters are presented by applying the power series expansions of displacement components to simultaneous ordinary differential equations. Finally, the member stiffness matrix is determined using the force-displacement relationships. In order to show accuracy and superiority of the beam element developed by this study, the critical lateral buckling moments for bisymmetric and monosymmetric I-beams are presented and compared with other results available in the literature, the isoparametric beam elements, and shell elements from ABAQUS.

An Analysis of the Productive Efficiency and Competitive Strength of Container Ports using the DEA, Super-efficiency, and FDH Methods

  • Park, Ro-Kyung
    • Journal of Korea Port Economic Association
    • /
    • v.18 no.1
    • /
    • pp.3-26
    • /
    • 2002
  • The purpose of this paper is to Investigate the productive efficiency and competitive strength of world container ports using the DEA, Super-efficiency, and FDH methods with the raw data from previous research by Jun et al.(1993). The super-efficiency measure examines the maximal radial change In input, outputs for an observation to remain efficient. Therefore, it provides a means of distinguishing between efficient observations, which would otherwise seem identical. FDH provides a good test mechanism for examining the practical implications of the choice available among alternative efficiency measures and orientations, because of the lack of convexity of its production possibility set. Both methods are complementary to DEA. This paper follows the traditional productivity analysis method overcoming the limitation of previous studies by using the DEA, FDH and Super-efficiency methods, and proposing in measure the relative competitive strength of worldwide container ports. The main empirical results of this paper are as follows: Firstly the ports of Singapore, Hongkong, Kilrung, Busan, Tokyo. and Longbeach were found to be efficient In the CCR model. The ports of Felixstowe, Bangkok, Singapore, Hongkong, Kilung, Busan, Tokyo, and Longbeach were found to be efficient in the BCC model. Secondly, super. efficiency rankings under CRS and input-oriented model are as follows: Longbeach, Keelung, Singapore, Busan, Tokyo, and Honkong. However, it was difficult In differenciate the rankings under the VRS and input-oriented model. due to major difficulties posed by the ports of Singapore, Hongkong, and Longbeach. Thirdly, the FDH method shows that the inefficient ports are Bremerhaven, Antwerp, Le Havre, Kobe, Seattle, New York The policy Implications of this study are as follows: Firstly, when port authorities want to measure the international competitive strength of container ports and enhance their productive efficiency, they should consider the traditional method as well as introducing the Super-efficiency and FDH methods. Secondly, according to the analysis results of the super-efficiency and FDH methods, poll authorities should recommend benchmarks ports and dominated ports as reference ports in order to enhance the productive efficiency of their container ports that have an efficiency rating of less than 1. Efficient ports whose efficiency ratings are over 1 in the Input-oriented Super-efficiency model should also consider the usage of input and output elements used by more efficient ports.

  • PDF