• Title/Summary/Keyword: super connection

Search Result 63, Processing Time 0.027 seconds

Design of Innovative SMA PR Connections Between Steel Beams and Composite Columns (강재보와 합성기둥에 사용된 새로운 반강접 접합부의 설계)

  • Son, Hong Min;Leon, Roberto T.;Hu, Jong Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.28-36
    • /
    • 2014
  • This study describes the development of innovative connections between steel beams and concrete-filled tube columns that utilize a combination of low-carbon steel and super-elastic shape memory alloy components. The intent is to combine the recentering behavior provided by the shape memory alloys to reduce building damage and residual drift after a major earthquake with the excellent energy dissipation of the low-carbon steel. The analysis and design of structures requires that simple yet accurate models for the connection behavior be developed. The development of a simplified 2D spring connection model for cyclic loads from advanced 3D FE monotonic studies is described. The implementation of those models into non-linear frame analyses indicates hat the recentering systems will provide substantial benefits for smaller earthquakes and superior performance to all-welded moment frames for large earthquakes.

DEVELOPMENT OF CONCRETE FILLED TUBE AS A PILLAR PILE FOR TOP DOWN METHOD

  • Jee-Yun Song;Hong-Chul Rhim;Seung-Weon Kim
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.808-813
    • /
    • 2009
  • Top-down method is widely used for urban area construction for its advantages in reducing environmental problems such as dust and noise, and saving construction cost depending on given conditions of a construction site. Because the excavation and construction of super- and sub-structures of the building have to be proceeded simultaneously, a column has to be embedded prior to excavation. This column is called a pillar column or pre-founded column. Usually a wide flange section is used for these columns. To place the columns, usually the diameter of casing holes needs to be larger than the section of the wide flange itself in order to accommodate a couple of tremie pipes for pouring concrete. In this paper, a newly developed method of using circular pipe as an alternative to the existing wide flange section is discussed. The crucial part of the new method is to develop a connection between the circular column and concrete flat slabs. For shear force transfer from concrete slab to the concrete filled tube (CFT) column, shear jackets with studs and shear bands are proposed. The studs are welded on the jackets at shop and placed around the circular column on site. The shear bands are welded on the outer side of the CFT at shop and inserted into ground with the CFT. Test results and application of the method to a construction site are also provided in this paper.

  • PDF

Design of the Magnetic Core Reactor for the connection to the Power System of DC Reactor Type High Temperature Superconducting Fault Current Limiter (DC 리액터형 고온초전도한류기의 전력계통 연계를 위한 자기철심리액터의 설계)

  • 임대준;배덕권;김호민;이찬주;윤경용;윤용수;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.322-325
    • /
    • 2002
  • In this paper, the power-linking device connecting the high-Tc super-conducting(HTS) coil to the power system in the DC reactor type three-phase high-Tc superconducting fault current limiter (SFCL) has been designed. This design was triggered from the concept that the magnetic energy could be exchanged into the electrical energy each other. Ferromagnetic material is used as the path of magnetic flux. The device mentioned above was named Magnetic Core Reactor(MCR). MCR was designed to minimize the voltage drop caused by copper loss. The current density of the conductor was 1.3 A/mm$^2$ and % voltage drop was 2%.

  • PDF

A Study on the Economic Evaluation Model of Splice of Reinforcement Bar(SD500) (초고강도 철근이음의 경제성 평가모델 개발에 관한 연구)

  • Kim, Jae-Yeob;Kim, Dae-Won
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.1
    • /
    • pp.71-76
    • /
    • 2008
  • Recently, the high-rise apartment housings have become a prototype of the urban residential dwelling in Korea and the numbers of one have steadily been increasing. According to this trend, the strength of the construction materials is also fortified to assure the stability and durability of the buildings. Specially, Re-bar of SD500 type is largely used at the construction sites of high-rise building. This study analyzes the current usage of SD500 high-strength re-bar at domestic construction sites. Through the result of this analysis, we develop Economic Evaluation Model that measure economic efficiency of lap splice and coupler splice, which are most commonly used in connection SD500. The evaluation method was applied to construction sites in Seoul in December 2006, and the result revealed that coupler splice is relatively superior in terms of cost efficiency when the re-bar diameter is longer and the concrete strength is lower.

Implication of Dynamic Materials and Softening Models to the FEM Analysis of SAF2507 Hot Forging (동적재료모델 및 연화모델을 도입한 SAF 2507의 열간단조 유한요소해석)

  • 방원규;정재영;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.195-198
    • /
    • 2003
  • High temperature deformation and softening behavior of SAF 2507 super duplex stainless steel (SDSS) has been investigated in connection with an FEM analysis of hot forging process. Flow curves at various strain rates and temperatures were determined first from compression tests, and the kinetics of dynamic recrystallization were also formulated through the analysis of load relaxation test results. Applying the dynamic materials and proposed by Prasad et al., it was possible to determine the characteristics of deformation behavior effectively at a given condition of deformation. Constitutive relations and recrystallization kinetics formulated from the test results were then implemented in a commercial FEM code. Flow stress compensation formulated upon the volume fraction of recrystallization and adiabatic heating was found to improve significantly the FEA solutions in predicting the forming load and the distribution of recrystallized volume fraction after forging.

  • PDF

Gas outflow in BLR of low-redshift AGNs

  • Shin, Jaejin;Woo, Jong-Hak;Nagao, Tohru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.59.1-59.1
    • /
    • 2014
  • AGN feedback has been believed as playing an important role in the galaxy-super massive black hole (SMBH) co-evolution. AGN gas outflow can lead to AGN feedback. We investigate gas outflow of low-redshift AGNs by using blue shift/asymmetric index (BAI), and velocity offset of CIV line. By comparing these gas outflow indicators (BAI and velocity offset) to AGN properties (i.e., SMBH mass, bolometric luminosity, and Eddington ratio) and BLR gas metallicity, we find positive correlations among outflow, Eddington ratio, and metallicity. These relations are consistent with those observed at high-redshift. We discuss the possibility of the connection between previous star formation with current AGN accretion and outflow.

  • PDF

Clinical considerations of use of titanium link - CAD/CAM zirconia abutment for dental implant in esthetically important areas (심미가 중요시되는 임플란트 치료시 타이타늄 링크-캐드캠 지르코니아 지대주 사용의 임상적 고려)

  • Kim, Jong-Yub
    • The Journal of the Korean dental association
    • /
    • v.54 no.2
    • /
    • pp.123-133
    • /
    • 2016
  • Currently increasing use of implants, especially in anterior implant esthetics has become a major concern for both the patient and dentist. In the case of thin biotype if the thickness of the gingival soft tissue is less than 2mm, human eye can detect differences of colors depends on underlying materials. The zirconia abutment can be use not only for better esthetics but also for the hygienic because it is less attractive for the plaque deposition when it compare to the metals. Zirconia itself has many advantages as a biomaterial but also has frequent mechanical problems when it use for abutment of internal connection implant. For prevention or reduction of mechanical failures, use of titanium-link with zirconia super-structure which part that connects directly into the implant can be a good alternative. In this literature, I would like to review the clinical considerations of use of titanium link - CAD/CAM zirconia abutment for dental implant in esthetically important areas.

  • PDF

Sub-Synchronous Range of Operation for a Wind Driven Double-Fed Induction Generator

  • Saleh, Mahmoud Abdel Halim;Eskander, Mona Naguib
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.72-78
    • /
    • 2010
  • In this paper the operation of a double-fed wound-rotor induction machine, coupled to a wind turbine, as a generator at sub-synchronous speeds is investigated. A novel approach is used in the analysis, namely, the rotor power flow approach. The conditions necessary for operating the machine as a double-fed induction generator (DFIG) are deduced. Formulae describing the factors affecting the range of sub-synchronous speeds within which generation occurs are deduced. The variations in the magnitude and phase angle of the voltage injected to the rotor circuit as the speed of the machine changes to achieve generation at the widest possible sub-synchronous speed range is presented. Also, the effect of the rotor parameters on the generation range is presented. The analysis proved that the generation range could increase from sub-synchronous to super-synchronous speeds, which increases the amount of energy captured by the wind energy conversion system (WECS) as result of utilizing the power available in the wind at low wind speeds.

An Art-Robot Expressing Emotion with Color Light and Behavior by Human-Object Interaction

  • Kwon, Yanghee;Kim, Sangwook
    • Journal of Multimedia Information System
    • /
    • v.4 no.2
    • /
    • pp.83-88
    • /
    • 2017
  • The era of the fourth industrial revolution, which will bring about a great wave of change in the 21st century, is the age of super-connection that links humans to humans, objects to objects, and humans to objects. In the smart city and the smart space which are evolving further, emotional engineering is a field of interdisciplinary researches that still attract attention with the development of technology. This paper proposes an emotional object prototype as a possibility of emotional interaction in the relation between human and object. By suggesting emotional objects that produce color changes and movements through the emotional interactions between humans and objects against the current social issue-loneliness of modern people, we have approached the influence of our lives in the relation with objects. It is expected that emotional objects that are approached from the fundamental view will be able to be in our lives as a viable cultural intermediary in our future living space.

Application of Dynamic Materials and Softening Models to the FEM Analysis of Hot Forging in SAF2507 Steel (동적재료모델 및 연화모델을 응용한 SAF 2507 강의 열간단조 유한요소해석)

  • 방원규;정재영;장영원
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.308-313
    • /
    • 2003
  • High temperature deformation and softening behavior of SAF 2507 super duplex stainless steel (SDSS) has been investigated in connection with an FEM analysis of hot forging process. Flow curves at various strain rates and temperatures were determined first from compression tests, and the kinetics of dynamic recrystallization were also formulated through the analysis of load relaxation test results. Using the dynamic materials theory proposed by Prasad, the deformation behavior was effectively determined for various conditions. Constitutive relations and recrystallization kinetics formulated from the test results were then implemented in a commercial FEM code. The forming load as well as the distribution of recrystallized volume fraction after forging was successfully predicted by means of the flow stress compensation formulated upon the volume fraction of recrystallization and adiabatic heating.