• 제목/요약/키워드: summarization

검색결과 378건 처리시간 0.023초

2단계 문장 추출방법을 이용한 자동 문서 요약 (Automatic Text Summarization with Two Step Sentence Extraction)

  • 정운철;고영중;서정연
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.910-912
    • /
    • 2004
  • 자동 문서 요약 시스템은 문서내에 담겨있는 정보를 최대한 표현하면서 문서의 크기를 줄이는 시스템이다. 본 논문에서는 문서 요약을 크게 2단계로 나누어서 수행한다. 문장내 요약본으로써의 불필요한 문장을 미리 제거하고 이에 더해 다양한 통계적 방법의 여러 장점들을 수용함으로써 보다 나은 성능 향상을 얻을 수 있었다. 비교시스템으로는 제목, 위치, 빈도, 도합유사도, 어휘 클러스터링을 이용한 시스템을 구축하여 사용하였으며 30%, 10% 문장요약에서 제안한 시스템은 모두 우수한 성능을 보였다.

  • PDF

이용자 태그를 활용한 비디오 스피치 요약의 자동 생성 연구 (Investigating an Automatic Method in Summarizing a Video Speech Using User-Assigned Tags)

  • 김현희
    • 한국문헌정보학회지
    • /
    • 제46권1호
    • /
    • pp.163-181
    • /
    • 2012
  • 본 연구는 스피치 요약의 알고리즘을 구성하기 위해서 방대한 스피치 본문의 복잡한 분석 없이 적용될 수 있는 이용자 태그 기법, 문장 위치 및 문장 중복도 제거 기법의 효율성을 분석해 보았다. 그런 다음, 이러한 분석 결과를 기초로 하여 스피치 요약 방법을 구성, 평가하여 효율적인 스피치 요약 방안을 제안하는 것을 연구 목적으로 하고 있다. 제안된 스피치 요약 방법은 태그 및 표제 키워드 정보를 활용하고 중복도를 최소화하면서 문장 위치에 대한 가중치를 적용할 수 있는 수정된 Maximum Marginal Relevance 모형을 사용하여 구성하였다. 제안된 요약 방법의 성능은 스피치 본문의 단어 빈도 및 단어 위치 정보를 적용하여 상대적으로 복잡한 어휘 처리를 한 Extractor 시스템의 성능과 비교되었다. 비교 결과, 제안된 요약 방법을 사용한 경우가 Extractor 시스템의 경우 보다 평균 정확률은 통계적으로 유의미한 차이를 보이며 더 높았고, 평균 재현율은 더 높았지만 통계적으로 유의미한 차이를 보이지는 못했다.

상품평의 언어적 분석을 통한 상품 평가 요약 시스템 (Product Evaluation Summarization Through Linguistic Analysis of Product Reviews)

  • 이우철;이현아;이공주
    • 정보처리학회논문지B
    • /
    • 제17B권1호
    • /
    • pp.93-98
    • /
    • 2010
  • 본 논문에서는 폭발적으로 증가하고 있는 상품평을 효과적으로 활용하기 위해 언어적 분석을 통하여 상품 평가를 요약하는 시스템을 제안한다. 시스템에서는 스커트 상품 분류의 경우 '디자인'과 '재질'과 같이, 상품을 평가하는 기준이 되는 항목에 대한 상품평의 부정과 긍정의 극성 여부를 판별하여 그래프 형태로 요약하여 제시한다. 본 논문에서는 작은 시드 어휘와 문맥에 기반한 자동 확장 방법을 사용하여 평가 항목 별 평가 어휘 극성 사전을 구축하여 평가 항목에 대한 상품평의 극성을 판정한다. 제안한 방식은 여러 온라인 쇼핑몰의 실제 상품평에 대한 실험에서 극성 사전 추출에서 평균 69.8%의 정확율과 문장별 극성 식별에서 평균 81.8%의 정확율을 보였다.

관계형 다차원모델에 기반한 온라인 고객리뷰 분석시스템의 설계 및 구현 (Study on Designing and Implementing Online Customer Analysis System based on Relational and Multi-dimensional Model)

  • 김근형;송왕철
    • 한국콘텐츠학회논문지
    • /
    • 제12권4호
    • /
    • pp.76-85
    • /
    • 2012
  • 오피니언마이닝 기법은 대량의 고개리뷰들에 나타나는 핵심개체 또는 속성들에 대하여 고객들이 느끼는 긍정 또는 부정의 정도를 계산할 수 있지만, 그 분석능력이 단순하다는 한계가 있다. 본 논문에서는 온라인 고객리뷰들에 대하여 다차원적으로 분석할 수 있는 기법을 제안하였다. 기존의 OLAP기법을 텍스트 데이터형에 적용할 수 있도록 수정하였다. 다차원 분석모델은 명사축과 형용사축, 문서축으로 구성되는 3차원 공간 개념을 4개의 관계형 테이블로 실체화 한 것이다. 다차원 분석모델은 기존의 오피니언마이닝, 정보요약, 클러스터링 알고리즘들을 융합할 수 있는 새로운 틀이라는 점에서 그 가치가 있다. 본 논문에서 제안한 다차원 분석모델과 알고리즘들을 실제로 구현하여 온라인 고객리뷰에 대한 복잡한 분석을 수행할 수 있음을 확인하였다.

상품 리뷰 요약에서의 문맥 정보를 이용한 의견 분류 방법 (A Sentiment Classification Method Using Context Information in Product Review Summarization)

  • 양정연;명재석;이상구
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제36권4호
    • /
    • pp.254-262
    • /
    • 2009
  • e비즈니스가 활발히 이루어지면서 소비자들은 온라인 쇼핑몰올 통해 수많은 상품을 접할 수 있게 되었고, 상품구매 시 다른 사람들의 리뷰를 참고하게 되었다. 하지만, 리뷰의 수도 많아짐에 따라 소비자가 모든 리뷰들을 살펴보기가 힘들다는 문제점이 대두되었으며 이를 해결하기 위해서 리뷰의 상품에 대한 평가를 요약하고 성향을 파악하는 오피니언 마이닝 연구가 나타나게 되었다. 본 논문에서는 상품리뷰를 대상으로 오피니언 마이닝을 수행하는 경우 어휘의 의견 성향을 파악할 때, 문맥정보를 활용하여 기존의 의견분류방법 보다 좀 더 정확한 의견 판단이 가능한 방법에 대해 다루고 있다. 이를 위해, 어휘가 사용될 때의 문맥정보를 정의하고 이를 의견분류에 적용하는 방법을 제안하였으며, 실험을 통하여 기존 연구 보다 상황별 알맞은 의견분류가 가능함을 보였다. 또한 수작업으로 말뭉치의 핵심 어휘들을 정의했던 기존 연구들에서의 방식에서 벗어나, 리뷰본문과 리뷰점수를 활용하여 자동으로 상황에 맞는 말뭉치를 구축하는 방법도 제안하였다. 이를 통해 상품리뷰에 나타난 어휘들의 문맥에 맞는 의미 성향을 정확하고 쉽게 판별해 낼 수 있게 되었다.

다차원 스트림 데이터의 연관 규칙 탐사 기법 (Mining Association Rules in Multidimensional Stream Data)

  • 김대인;박준;김홍기;황부현
    • 정보처리학회논문지D
    • /
    • 제13D권6호
    • /
    • pp.765-774
    • /
    • 2006
  • 연관 규칙 탐사는 데이터베이스를 분석하여 잠재되어 있는 지식을 발견하기 위한 기법으로 스트림 데이터 시스템에서 연관 규칙 탐사에 대한 연구가 활발하게 진행되고 있다. 그러나 대부분의 연구들은 센서에서 수집되는 단일 스트림 데이터에 관한 것이며 다차원 스트림 데이터간의 연관 정보는 간과하고 있다. 본 논문에서는 다차원 스트림 데이터간의 연관 규칙을 탐사할 수 있는 AR-MS 방법을 제안한다. AR-MS 방법은 한 번의 데이터 스캔으로 연관 규칙 탐사에 필요한 요약 정보를 구축함으로써 스트림 데이터의 특성을 반영하며, 자주 발생하지는 않지만 특정 이벤트와 빈번하게 발생하는 의미 있는 희소 항목 집합에 대한 연관 규칙을 탐사할 수 있다. 또한 AR-MS 방법은 구축된 요약 정보를 사용하여 다차원 스트림 데이터간의 최대 빈발 항목 집합에 대한 연관 규칙도 탐사한다. 그리고 다양한 실험을 통하여 제안하는 방법이 기존의 방법들에 비하여 우수함을 확인하였다.

필드와 모션벡터의 특징정보를 이용한 스포츠 뉴스 비디오의 장르 분류 (Automatic Genre Classification of Sports News Video Using Features of Playfield and Motion Vector)

  • 송미영;장상현;조형제
    • 정보처리학회논문지B
    • /
    • 제14B권2호
    • /
    • pp.89-98
    • /
    • 2007
  • 비디오와 브라우징, 검색, 조작을 위해서 비디오 내용을 기술하는 색인이 요구된다. 지금까지 색인의 구성은 대부분 비디오 내용에 제한된 키워드를 수작업으로 할당하는 전문가에 의해 수행되었는데 이는 비용과 시간을 소비하는 사업이므로 비디오 내용을 자동으로 분류하는 것이 필요하다. 이 연구는 축구, 골프, 야구, 농구, 배구 등 5종의 스포츠 뉴스 비디오의 분석과 요약을 위해서 자동적이고 효율적인 방법을 제안한다. 우선, 스포츠 뉴스 비디오를 앵커 장면과 스포츠 기사 장면으로 분류한다. 장면 분류는 앵커 장면의 영상 전처리와 색상 특정을 기반으로 한다. 그리고 필드의 우세색상과 모션 방향을 특징으로 이용하여 스포츠 장면을 5개의 장르로 분류한다. 241개의 스포츠 뉴스 장면에 대한 실험에서 75%의 정확도를 얻었다. 따라서 제안된 기법은 향후 개별 스포츠 뉴스와 스포츠 하이라이트를 위한 뉴스 비디오를 검색하는데 이용될 수 있을 것이다.

관계기반 요약그래프에서 효율적인 최단경로 탐색기법 (Efficient Shortest Path Techniques on a Summarized Graph based on the Relationships)

  • 김현욱;서호진;이영구
    • 정보과학회 논문지
    • /
    • 제44권7호
    • /
    • pp.710-718
    • /
    • 2017
  • 그래프 데이터가 대용량화됨에 따라 데이터를 저장 및 유지하기 위한 비용이 지속적으로 증가하고 있다. 이와 같은 대용량 그래프에서 최단경로를 탐색하는 것은 빈번한 디스크 I/O와 그래프의 높은 복잡도로 인해 매우 오랜 수행시간을 요구한다. 최근 그래프의 밀집도가 높은 부분그래프를 하나의 슈퍼노드로 표현하여 그래프 크기와 디스크 I/O를 줄이는 그래프 요약 연구가 수행되고 있다. 이와 같은 요약된 그래프에서 효율적으로 최단경로를 탐색하기 위해서는 요약그래프의 복원을 최소화해야 한다. 본 논문에서는 요약그래프의 복원 성능을 분석하고, 이를 이용하여 오차를 최소화하며 빠르게 최단경로를 탐색하는 근사 기법을 제안한다. 또한 최단경로 탐색과정 중 복원이 요구되는 슈퍼노드가 포함된 경로를 사전에 색인으로 구축하여 정확한 최단경로를 효율적으로 탐색하는 기법을 제안한다. 실세계 데이터를 이용한 실험을 통하여 제안하는 요약그래프에서의 최단거리 탐색기법이 원본 그래프를 고려한 기법들보다 최대 70%로 수행시간이 향상되었음을 보인다.

뇌파정보를 활용한 영상물 요약 알고리즘 설계와 평가 (Design and Evaluation of Video Summarization Algorithm based on EEG Information)

  • 김현희;김용호
    • 한국문헌정보학회지
    • /
    • 제52권4호
    • /
    • pp.91-110
    • /
    • 2018
  • 본 연구는 비디오 스킴의 자동 생성을 위한 비디오 요약 알고리즘을 제안하고 이를 평가하였다. 제안된 알고리즘은 ERP(Event Related Potentials) 기반의 주제 적합성 모형, MMR(Maximal Marginal Relevance) 기법 및 판별분석기법을 사용하여 구현하였다. 제안한 ERP/MMR 기반 알고리즘을 이용하여 구성한 비디오 스킴의 품질과 유용성을 내재적 및 외재적 평가를 통해서 검증하였다. 내재적 및 외재적 평가에서 ERP/MMR 방법들의 평가 점수들은 각각 경쟁 기준으로 사용한 SBD(Shot Boundary Detection) 방법의 평가 점수 보다 유의미한 차이를 보이며 높게 나왔다. 그러나 이 두 평가에서 ERP/MMR(${\lambda}=0.6$) 방법의 평가 점수와 ERP/MMR(${\lambda}=1.0$) 방법의 평가 점수 간에 통계적으로 유의미한 차이는 없는 것으로 나타났다.

설명 가능한 개인화 영화 추천 서비스를 위한 딥러닝 기반 텍스트 요약 모델 (Deep Learning-based Text Summarization Model for Explainable Personalized Movie Recommendation Service)

  • 진요요;강경모;김재경
    • 한국IT서비스학회지
    • /
    • 제21권2호
    • /
    • pp.109-126
    • /
    • 2022
  • The number and variety of products and services offered by companies have increased dramatically, providing customers with more choices to meet their needs. As a solution to this information overload problem, the provision of tailored services to individuals has become increasingly important, and the personalized recommender systems have been widely studied and used in both academia and industry. Existing recommender systems face important problems in practical applications. The most important problem is that it cannot clearly explain why it recommends these products. In recent years, some researchers have found that the explanation of recommender systems may be very useful. As a result, users are generally increasing conversion rates, satisfaction, and trust in the recommender system if it is explained why those particular items are recommended. Therefore, this study presents a methodology of providing an explanatory function of a recommender system using a review text left by a user. The basic idea is not to use all of the user's reviews, but to provide them in a summarized form using only reviews left by similar users or neighbors involved in recommending the item as an explanation when providing the recommended item to the user. To achieve this research goal, this study aims to provide a product recommendation list using user-based collaborative filtering techniques, combine reviews left by neighboring users with each product to build a model that combines text summary methods among deep learning-based natural language processing methods. Using the IMDb movie database, text reviews of all target user neighbors' movies are collected and summarized to present descriptions of recommended movies. There are several text summary methods, but this study aims to evaluate whether the review summary is well performed by training the Sequence-to-sequence+attention model, which is a representative generation summary method, and the BertSum model, which is an extraction summary model.