• 제목/요약/키워드: sum-rate performance

Search Result 212, Processing Time 0.022 seconds

Performance Improvement ofSpeech Recognition Based on SPLICEin Noisy Environments (SPLICE 방법에 기반한 잡음 환경에서의 음성 인식 성능 향상)

  • Kim, Jong-Hyeon;Song, Hwa-Jeon;Lee, Jong-Seok;Kim, Hyung-Soon
    • MALSORI
    • /
    • no.53
    • /
    • pp.103-118
    • /
    • 2005
  • The performance of speech recognition system is degraded by mismatch between training and test environments. Recently, Stereo-based Piecewise LInear Compensation for Environments (SPLICE) was introduced to overcome environmental mismatch using stereo data. In this paper, we propose several methods to improve the conventional SPLICE and evaluate them in the Aurora2 task. We generalize SPLICE to compensate for covariance matrix as well as mean vector in the feature space, and thereby yielding the error rate reduction of 48.93%. We also employ the weighted sum of correction vectors using posterior probabilities of all Gaussians, and the error rate reduction of 48.62% is achieved. With the combination of the above two methods, the error rate is reduced by 49.61% from the Aurora2 baseline system.

  • PDF

Opportunistic Relay Selection for Joint Decode-and-Forward Based Two-Way Relaying with Network Coding

  • Ji, Xiaodong;Zheng, Baoyu;Zou, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1513-1527
    • /
    • 2011
  • This paper investigates the capacity rate problems for a joint decode-and-forward (JDF) based two-way relaying with network coding. We first characterize the achievable rate region for a conventional three-node network scenario along with the calculation of the corresponding maximal sum-rate. Then, for the goal of maximizing the system sum-rate, opportunistic relay selection is examined for multi-relay networks. As a result, a novel strategy for the implementation of relay selection is proposed, which depends on the instantaneous channel state and allows a single best relay to help the two-way information exchange. The JDF scheme and the scheme using relay selection are analyzed in terms of outage probability, after which the corresponding exact expressions are developed over Rayleigh fading channels. For the purpose of comparison, outage probabilities of the amplify-and-forward (AF) scheme and those of the scheme using relay selection are also derived. Finally, simulation experiments are done and performance comparisons are conducted. The results verify that the proposed strategy is an appropriate method for the implementation of relay selection and can achieve significant performance gains in terms of outage probability regardless of the symmetry or asymmetry of the channels. Compared with the AF scheme and the scheme using relay selection, the conventional JDF scheme and that using relay selection perform well at low signal-to-noise ratios (SNRs).

Performance Analysis of Deep Learning Based Transmit Power Control Using SINR Information Feedback in NOMA Systems (NOMA 시스템에서 SINR 정보 피드백을 이용한 딥러닝 기반 송신 전력 제어의 성능 분석)

  • Kim, Donghyeon;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.685-690
    • /
    • 2021
  • In this paper, we propose a deep learning-based transmit power control scheme to maximize the sum-rates while satisfying the minimum data-rate in downlink non-orthogonal multiple access (NOMA) systems. In downlink NOMA, we consider the co-channel interference that occurs from a base station other than the cell where the user is located, and the user feeds back the signal-to-interference plus noise power ratio (SINR) information instead of channel state information to reduce system feedback overhead. Therefore, the base station controls transmit power using only SINR information. The use of implicit SINR information has the advantage of decreasing the information dimension, but has disadvantage of reducing the data-rate. In this paper, we resolve this problem with deep learning-based training methods and show that the performance of training can be improved if the dimension of deep learning inputs is effectively reduced. Through simulation, we verify that the proposed deep learning-based power control scheme improves the sum-rate while satisfying the minimum data-rate.

Unlicensed Band Traffic and Fairness Maximization Approach Based on Rate-Splitting Multiple Access (전송률 분할 다중 접속 기술을 활용한 비면허 대역의 트래픽과 공정성 최대화 기법)

  • Jeon Zang Woo;Kim Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.10
    • /
    • pp.299-308
    • /
    • 2023
  • As the spectrum shortage problem has accelerated by the emergence of various services, New Radio-Unlicensed (NR-U) has appeared, allowing users who communicated in licensed bands to communicate in unlicensed bands. However, NR-U network users reduce the performance of Wi-Fi network users who communicate in the same unlicensed band. In this paper, we aim to simultaneously maximize the fairness and throughput of the unlicensed band, where the NR-U network users and the WiFi network users coexist. First, we propose an optimal power allocation scheme based on Monte Carlo Policy Gradient of reinforcement learning to maximize the sum of rates of NR-U networks utilizing rate-splitting multiple access in unlicensed bands. Then, we propose a channel occupancy time division algorithm based on sequential Raiffa bargaining solution of game theory that can simultaneously maximize system throughput and fairness for the coexistence of NR-U and WiFi networks in the same unlicensed band. Simulation results show that the rate splitting multiple access shows better performance than the conventional multiple access technology by comparing the sum-rate when the result value is finally converged under the same transmission power. In addition, we compare the data transfer amount and fairness of NR-U network users, WiFi network users, and total system, and prove that the channel occupancy time division algorithm based on sequential Raiffa bargaining solution of this paper satisfies throughput and fairness at the same time than other algorithms.

Optimal buffer size control of serial production lines with quality inspection machines

  • Han, Man-Soo;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.350-353
    • /
    • 1996
  • In this paper, based on the performance analysis of serial production lines with quality inspection machines, we develope an buffer size optimization method to maximize the production rate. The total sum of buffer sizes are given and a constant, and under this constraint, using the linear approximation method, we suggest a closed form solution for the optimization problem with an acceptable error. Also, we show that the upstream and downstream buffers of the worst performance machine have a significant effect on the production rate. Finally, the suggested methods are validated by simulations.

  • PDF

Performance Analysis of VoIP Services in Mobile WiMAX Systems with a Hybrid ARQ Scheme

  • So, Jaewoo
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.510-517
    • /
    • 2012
  • This paper analyzes the performance of voice-over-Internet protocol (VoIP) services in terms of the system throughput, the packet delay, and the signaling overhead in a mobile WiMAX system with a hybrid automatic repeat request (HARQ) mechanism. Furthermore, a queueing analytical model is developed with due consideration of adaptive modulation and coding, the signaling overhead, and the retransmissions of erroneous packets. The arrival process is modeled as the sum of the arrival rate at the initial transmission queue and the retransmission queue, respectively. The service rate is calculated by taking the HARQ retransmissions into consideration. This paper also evaluates the performance of VoIP services in a mobile WiMAX system with and without persistent allocation; persistent allocation is a technique used to reduce the signaling overhead for connections with a periodic traffic pattern and a relatively fixed payload. As shown in the simulation results, the HARQ mechanism increases the system throughput as well as the signaling overhead and the packet delay.

High-Performance and Low-Complexity Decoding of High-Weight LDPC Codes (높은 무게 LDPC 부호의 저복잡도 고성능 복호 알고리즘)

  • Cho, Jun-Ho;Sung, Won-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.498-504
    • /
    • 2009
  • A high-performance low-complexity decoding algorithm for LDPC codes is proposed in this paper, which has the advantages of both bit-flipping (BF) algorithm and sum-product algorithm (SPA). The proposed soft bit-flipping algorithm requires only simple comparison and addition operations for computing the messages between bit and check nodes, and the amount of those operations is also small. By increasing the utilization ratio of the computed messages and by adopting nonuniform quantization, the signal-to-noise ratio (SNR) gap to the SPA is reduced to 0.4dB at the frame error rate of 10-4 with only 5-bit assignment for quantization. LDPC codes with high column or row weights, which are not suitable for the SPA decoding due to the complexity, can be practically implemented without much worsening the error performance.

Power Allocation and Subcarrier Assignment for Joint Delivery of Unicast and Broadcast Transmissions in OFDM Systems

  • Lee, Deokhui;So, Jaewoo;Lee, Seong Ro
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.375-386
    • /
    • 2016
  • Most existing studies on broadcast services in orthogonal frequency division multiplexing (OFDM) systems have focused on how to allocate the transmission power to the subcarriers. However, because a broadcasting system must guarantee quality of service to all users, the performance of the broadcast service dominantly depends on the channel state of the user who has the lowest received signal-to-noise ratio among users. To reduce the effect of the worst user on the system performance, we propose a joint delivery scheme of unicast and broadcast transmissions in OFDM systems with broadcast and unicast best-effort users. In the proposed joint delivery scheme, the BS delivers the broadcast information using both the broadcast and unicast subcarriers at the same time in order to improve the performance of the broadcast service. The object of the proposed scheme is to minimize the outage probability of the broadcast service while maximizing the sum-rate of best-effort users. For the proposed joint delivery scheme, we develop an adaptive power and subcarrier allocation algorithm under the constraint of total transmission power. This paper shows that the optimal power allocation over each subcarrier in the proposed scheme has a multi-level water filling form. Because the power allocation and the subcarrier assignment problems should be jointly solved, we develop an iterative algorithm to find the optimal solution. Numerical results show that the proposed joint delivery scheme with adaptive power and subcarrier allocation outperforms the conventional scheme in terms of the outage probability of the broadcast service and the sum-rate of best-effort users.

Rising Open Misery Index of the USA - A Precursor of Economic Crisis - (미국 개방 미저리 지수의 증가추세 - 경제위기의 전조 -)

  • Cheong, Ki-Woong;Kim, Jeongsook;Lee, Sanghack
    • International Area Studies Review
    • /
    • v.13 no.1
    • /
    • pp.39-51
    • /
    • 2009
  • The misery index is the sum of the inflation rate and the unemployment rate. The higher the index, the lower the performance of the national economy. Lee and Cheong (2007) propose that the open misery index, defined to be the sum of the misery index and the ratio of current account to GDP, properly measure the economic performance of a national economy when its degree of openness is large. This paper shows that the periods of rising open misery index of the USA coincide with those of economic hardship in the USA. Most recently, the open misery index of the USA has shown a rising trend for a decade prior to the current economic crisis. That is, external and internal imbalances of the USA have accumulated for a decade prior to the current economic crisis. We interpret the recent rising trend of the open misery index of the USA as a precursor of the current economic crisis.

Scheduling Method based on SINR at Cell Edge for multi-mode mobile device (멀티모드 단말기를 위한 셀 경계 지역에서의 SINR 기반 사용자 선택 방법)

  • Kum, Donghyun;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.63-68
    • /
    • 2015
  • We consider a cell edge environment. In cell edge, a user interfered by signal which is generated by a base stations not including the user. In cell edge environment, that is, there are inter cell interference (ICI) as well as multi user interference (MUI). Coordinated multi-point transmission (CoMP) is a technique which mitigates ICI between base stations. In CoMP, therefore, base stations can coordinate with each other by sharing user state information (CSI) in order to mitigate ICI. To improve sum rate performance in CoMP, each base station should generate optimal user group and transmit data to users selected in the optimal user group. In this paper, we propose a user selection algorithm in CoMP. The proposed method use signal to interference plus noise ratio (SINR) as criterion of selecting users. Because base station can't measure accurate SINR of users, in this paper, we estimate SINR equation considering ICI as well as MUI. Also, we propose a user selection algorithm based on the estimated SINR. Through MATAL simulation, we verify that the proposed method improves the system sum rate by an average of 1.5 ~ 3 bps/Hz compared to the conventional method.