• 제목/요약/키워드: sulfuric acid catalyst

검색결과 80건 처리시간 0.03초

Optimization of organosolv pretreatment with sulfuric acid for enhancing enzymatic hydrolysis of Pitch Pine (Pinus rigida)

  • 박나현;김혜연;곽기섭;구본욱;어환명;최인규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.505-505
    • /
    • 2009
  • The object is to optimize the best condition of organosolv pretreatment process with sulfuric acid as a catalyst. As a material, Pitch pine (Pinus rigida) was ground and sieved through 40-mesh screen, and Celluclast and $\beta$-glucosidase were used as enzymes for enzymatic hydrolysis. Pretreatment processes were carried out in the minibomb, and 20 g of materials with 200 ml of 50% ethanol solution (v/v) with 1% sulfuric acid as a catalyst. Pretreatment temperature was varied from $150^{\circ}C$ to $190^{\circ}C$, and time was varied from 0 to 20 min. Then, residual materials were used for enzymatic hydrolysis. The best conditions were selected by estimating followed enzymatic hydrolysis rate and degradable rates after pretreatment process. The highest value of enzymatic hydrolysis rate was obtained as 55 - 60% at 160 and at $180^{\circ}C$, but the value decreased under more severe conditions. As the residual rates decreased under severe conditions, it infered that the decrease of sugar contents limits enzymatic hydrolysis rates. Combined with enzymatic hydrolysis rate, degradable rates and H-factors, the temperatures at $160^{\circ}C$ for 20 min and at $180^{\circ}C$ for 0 min were concluded as the optimized conditions where have the lowest H-factor value for considering energy input.

  • PDF

공정최적화에 의한 황산공장의 이산화황가스 배출 최소화 (Minimization of Sulfur Dioxide Gas Emission by Process Optimization of Sulfuric Acid Plants)

  • 조병학;송광호;김인원
    • 한국가스학회지
    • /
    • 제3권2호
    • /
    • pp.70-76
    • /
    • 1999
  • 이산화황 배출에 대한 대기 오염 방지법의 엄격한 규제로 인하여 황산제조 업체에서는 가능한 높은 전화율을 얻는 방법에 관심을 갖고 있다. 본 연구에서는 현재 가동하고 있는 황산공장의 이중 접촉식 전환탑 공정에서 전화율을 증가시키고 배출되는 이산화황 가스의 농도를 최소화하기 위하여 매개변수 분석과 공정최적화 방법을 사용하였다. 이중 접촉식 전환탑 공정에 대하여 공급되는 이산화황의 조성, 각 촉매층 도입부의 압력과 온도, 촉매층의 높이의 변화에 대한 전화율 변화를 살펴보기 위해 공정 모델링과 컴퓨터 모사 프로그램을 개발하였다. 이를 통해 삼산화황으로의 최대 전화율과 배출되는 잔여 이산화황 가스 농도의 최소를 위해 촉매층의 도입부의 온도와 촉매층 높이를 최적화하였다. 이 최적치는 높은 전화율을 유지하도록 하는 전환탑 설계와 조업 조건의 지침이 될 것이다.

  • PDF

바이오디젤 생산을 위한 어유의 에스테르화 및 전이에스테르화 반응 (Esterification and Trans-esterification Reaction of Fish Oil for Bio-diesel Production)

  • 이영재;김덕근;이진석;박순철;이진원
    • 청정기술
    • /
    • 제19권3호
    • /
    • pp.313-319
    • /
    • 2013
  • 본 연구에서는 유리지방산을 4% 포함한 어유로부터 바이오디젤을 제조하기 위해 산촉매를 이용한 에스테르화 반응과 염기촉매를 이용한 전이에스테르화 반응을 수행하였다. 실험에 사용된 어유는 GS바이오사(社)로부터 공급받은 베트남산 메기(catfish)에서 추출된 오일을 사용하였다. 에스테르화 반응에 대하여 불균질계 고체 산촉매로 Amberlyst-15와 Amberlyst BD-20을 이용하였으며 균질계 산촉매로 황산을 사용하였다. 에스테르화 반응에 의한 유리지방산 제거율이 가장 높은 촉매는 황산으로 나타났으며 반응시간도 가장 짧게 나타났다. 3종의 염기촉매 KOH, $NaOCH_3$, NaOH를 이용하여 어유의 전이에스테르화 반응 특성을 조사한 결과 KOH 촉매가 가장 적합한 것으로 나타났다. $NaOCH_3$와 NaOH 촉매의 경우 전이에스테르화 반응시 글리세롤과 바이오디젤이 일정한 조건에서 고형화 현상이 관찰되었으며 비누화 반응이 진행된 것으로 판단된다. KOH 촉매를 이용하여 초기 원료 산가와 메탄올 투입량이 전이에스테르화 반응에 미치는 영향을 조사한 결과 초기 원료오일의 산가는 낮을수록 좋았으며 메탄올과 오일의 몰비는 9:1이 적합한 것으로 도출되었다.

Effective Liquid-phase Nitration of Benzene Catalyzed by a Stable Solid Acid Catalyst: Silica Supported Cs2.5H0.5PMo12O40

  • Gong, Shu-Wen;Liu, Li-Jun;Zhang, Qian;Wang, Liang-Yin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권4호
    • /
    • pp.1279-1284
    • /
    • 2012
  • Silica supported $Cs_{2.5}H_{0.5}PMo_{12}O_{40}$ catalyst was prepared through sol-gel method with ethyl silicate-40 as silicon resource and characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen adsorption-desorption and potentiometric titration methods. The $Cs_{2.5}H_{0.5}PMo_{12}O_{40}$ particles with Keggin-type structure well dispersed on the surface of silica, and the catalyst exhibited high surface area and acidity. The catalytic performance of the catalysts for benzene liquid-phase nitration was examined with 65% nitric acid as nitrating agent, and the effects of various parameters were tested, which including temperature, time and amount of catalyst, reactants ratio, especially the recycle of catalyst was emphasized. Benzene was effectively nitrated to mononitro-benzene with high conversion (95%) in optimized conditions. Most importantly, the supported catalyst was proved has excellent stability in the nitration progress, and there were no any other organic solvent and sulfuric acid were used in the reaction system, so the liquid-phase nitration of benzene that we developed was an eco-friendly and attractive alternative for the commercial technology.

ABS 수지상의 도금층 형성을 위한 에칭 방법 연구 (Study of Etching Method for Plating Layer Formation of ABS Resin)

  • 최경수;최기덕;신현준;이상기;최순돈
    • 한국표면공학회지
    • /
    • 제47권3호
    • /
    • pp.128-136
    • /
    • 2014
  • In the present study, we successfully developed an eco-friendly chemical etching solution and proper condition for plating on ABS material. The mechanism of forming Ni plating layer on ABS substrate is known as following. In general, the etching solution used for the etching process is a solution of chromic acid and sulfuric acid. The etching solution is given to the surface resulting in elution of butadiene group, so-called anchor effect. Such a rough surface can easily adsorb catalyst resulting in the increase of adhesion between ABS substrate and Ni plating layer. However a use of chromic acid is harmful to environment. It is, therefore, essential to develop a new alternative solution. In the present study, we proposed an eco-friendly etching solution composed of potassium permanganate, sulfuric acid and phosphoric acid. This solution was testified to observe the surface microstructure and the pore size of electrical Ni plating layer, and the adhesive correlation between deposited layers fabricated by electro Ni plating was confirmed. The result of the present study, the newly developed, eco-friendly etching solution, which is a mixture of potassium permanganate 25 g/L, sulfuric acid 650ml/L and phosphoric acid 250ml/L, has a similar etching effect and adhesion property, compared with the commercially used chromium acid solution in the condition at $70^{\circ}C$ for 5 min.

고분자전해질 연료전지에서 고분자 막과 전극의 철 이온 오염 및 산 세척 효과 (Iron Ion Contamination and Acid Washing Effect of Polymer Membrane and Electrode in Polymer Electrolyte Fuel Cell)

  • 유동근;박민정;오소형;박권필
    • Korean Chemical Engineering Research
    • /
    • 제60권1호
    • /
    • pp.20-24
    • /
    • 2022
  • 고분자전해질연료전지 (PEMFC) 장기사용과정에서스택요소의부식및공급가스의오염에의해막전극합체 (MEA)의 화학적 열화가 발생한다. 본 연구에서는 화학적으로 열화된 MEA를 산 세척해서 성능을 회복시킬 수 있는지 연구하였다. 철 이온을 오염시키고 황산 수용액으로 세척하여 PEMFC 셀에서 성능을 측정해 비교했다. 0.5 ppm의 철 이온 오염에 의해 약 25%의 성능 감소가 있었고 0.15 M 황산 세척에 의해 97.1% 성능회복이 가능했다. 고분자 막의 철 이온 오염에 의해 막 저항이 증가했고, 저농도 황산 수용액 세척에 의해 전극 촉매의 손실을 최소화하면서 막에서 철 이온을 세척함으로써 이온전도도가 회복되었다. PEMFC MEA의 화학적 오염에 의한 내구성 감소를 산 세척에 의해 해결할 수 있는 가능성을 확인하였다.

초산펄프화법에 의해 신문고지로부터 제조된 셀룰로오스 아세데이트의 분석 (The Analysis of Manufactured Cellulose Acetate Using Old Newsprint by Acetosolv Pulping)

  • 임부국;이종윤;양재경;장준복
    • 펄프종이기술
    • /
    • 제35권1호
    • /
    • pp.41-47
    • /
    • 2003
  • Recently, interest in utilization plan of recycling paper have been enhanced. Therefore, this research aimed to develop the manufacture process of cellulose acetate using old newsprint by acetosolv pulping process. And the manufactured cellulose acetate was also analyzed, especially based on chemical properties. The summarized results in this research were as follows; Reaction time, kind and amount of catalyst, and ratio of liquor to material were varied during acetosolv pulping process of old newsprint. Ratio of liquor to material did not give the significant difference in reaction product. Delignification rate was increased with increasing reaction time during acetosolv pulping, but yield and degree of substitution decreased with increasing reaction time. Sulfuric acid are better catalyst than hydrochloric acid in acetosolv pulping process for old newsprint, and optimal addition amount of catalyst was 1% based on reaction material. Delignification, yield, and degree of substitution were influenced by the catalyst and reaction time. Under pulping condition of $120^{\circ}C$ in 1/12 liquor to material ratio and 60min, degree of substitution was about 0.7. The acetylation reaction was not completely caused by these reaction condition. The examination of the FT-IR spectra revealed that absorption band(1200$\textrm{cm}^{-2}$, 1,750$\textrm{cm}^{-1}$) caused by carbonyl group were confirmed.

콩기름을 이용한 폴리우레탄 포옴의 합성 (Synthesis of Polyurethane Foam with Soybean Oil)

  • 양도현;이광용;신재섭
    • 공업화학
    • /
    • 제10권5호
    • /
    • pp.731-736
    • /
    • 1999
  • 식물성 천연 유지인 콩기름을 peracetic acid로 에폭시화 시킨 후에 황산 촉매 하에서 메탄올과 반응시켜서 OH-value가 186(mg KOH/g)인 폴리올을 합성하였다. 합성한 폴리올에 계면활성제로는 silicon계 B-8409를, 발포제로는 증류수를, 촉매로는 dimethylcyclohexylamine을, 이소시아네이트로는 polymeric MDI를 사용하여 폴리우레탄 포옴을 합성하였다. 형성된 포옴의 밀도, 압축강도, 압축탄성률, cell의 구조 등을 조사하였다. MDI의 당량비를 변화시켜 가며 포옴을 형성시켜 보았으며, MDI index를 105로 고정하고, 발포제, 계면활성제, 촉매의 양을 각각 변화시켜 가며 포옴을 형성시켜 보았다. MDI index가 증가할수록 밀도와 압축 물성이 증가하였다.

  • PDF

Microwave Assisted Energy Efficient Biodiesel Production from Crude Pongamia pinnata (L.) Oil Using Homogeneous Catalyst

  • Kumar, Ritesh;Sethy, A.K.
    • Journal of Forest and Environmental Science
    • /
    • 제31권1호
    • /
    • pp.1-6
    • /
    • 2015
  • Microwave assisted biodiesel production from crude Pongamia pinnata oil using homogeneous base catalyst (KOH) was unsuccessful because of considerable soap formation. Therefore, a two step process of biodiesel production from high free fatty acid (FFA) oil was investigated. In first step, crude P. pinnata oil was acid catalyzed using $H_2SO_4$ and acid value of oil was reduced to less than 4 mg KOH/g. Effect of sulfuric acid concentration, alcohol-oil molar ratio and microwave irradiation time on acid value of oil was studied. Result suggested that 1.5% $H_2SO_4$ (w/w), 6:1 methanol oil molar ratio and 3 min microwave irradiation time was sufficient to reduce the acid value of oil from 12 and 22 mg KOH/g to 2.9 and 3.9 mg/KOH/g, respectively. Oil obtained after pretreatment was subsequently used for microwave assisted alkali catalyzed transesterification. A higher biodiesel yield (99.0%) was achieved by adopting two step processes. Microwave energy efficiency during alkali catalyzed transesterification was also investigated. The results suggested a significant energy saving because of reduced reaction time under microwave heating.

사무용 폐지에서 유래된 글루코오스를 이용한 레불린산 생산 (Production of Levulinic Acid Using Glucose Derived from Office Waste Paper)

  • 반세은;박윤;이성초;임예은;이재원
    • 신재생에너지
    • /
    • 제17권2호
    • /
    • pp.32-39
    • /
    • 2021
  • The optimal conditions for producing levulinic acid from office waste paper were investigated. Glucose was produced by enzymatic hydrolysis and its yield maximized by varying the soaking time of the substrate and amounts of enzyme and substrate. The optimal conditions to produce levulinic acid using the hydrolysate were determined by response surface methodology, with reaction temperature and catalyst (sulfuric acid) concentration as independent variables. The production model was assessed with an ANOVA regression analysis, and the results indicate its suitability for levulinic acid production (p, F, and lack-of-fit values were 0.003, 20.1, and 0.058, respectively). The optimal conditions were a reaction time of 56.27 min and catalyst concentration of 5.9% with a predicted yield of 2.588 g/L. We verified the findings under the same conditions and obtained 2.323 g/L of levulinic acid.