Browse > Article
http://dx.doi.org/10.7849/ksnre.2021.0005

Production of Levulinic Acid Using Glucose Derived from Office Waste Paper  

Ban, Se-Eun (Department of Wood Science and Engineering, Chonnam National University)
Park, Yoon (Department of Wood Science and Engineering, Chonnam National University)
Yi, Sung-Cho (Department of Wood Science and Engineering, Chonnam National University)
Lim, Ye-Eun (Department of Wood Science and Engineering, Chonnam National University)
Lee, Jae-Won (Department of Wood Science and Engineering, Chonnam National University)
Publication Information
New & Renewable Energy / v.17, no.2, 2021 , pp. 32-39 More about this Journal
Abstract
The optimal conditions for producing levulinic acid from office waste paper were investigated. Glucose was produced by enzymatic hydrolysis and its yield maximized by varying the soaking time of the substrate and amounts of enzyme and substrate. The optimal conditions to produce levulinic acid using the hydrolysate were determined by response surface methodology, with reaction temperature and catalyst (sulfuric acid) concentration as independent variables. The production model was assessed with an ANOVA regression analysis, and the results indicate its suitability for levulinic acid production (p, F, and lack-of-fit values were 0.003, 20.1, and 0.058, respectively). The optimal conditions were a reaction time of 56.27 min and catalyst concentration of 5.9% with a predicted yield of 2.588 g/L. We verified the findings under the same conditions and obtained 2.323 g/L of levulinic acid.
Keywords
Office waste paper; Enzymatic hydrolysis; Levulinic acid; Response surface methodology;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Han, K.H., Jang, H.S., and Hong, I.K. 2019, "Optimization of Antioxidant Extraction from Dandelion (Taraxacum officinale) Leaves Using BBD-RSM", Appl, Chem, Eng., 30(4), 408-414.   DOI
2 Cha, Y.L., Park, Y.R., Kim, J.K., Choi, Y.H., Moon, Y.H., Bark, S.T., An, G.H., Koo, B.C., and Park, K.G, 2011, "Optimization of fermentation conditions fort he ethanol production from sweet sorghum juice by saccharomyces cerevisiae using response surface methodolgy", New. Renew, Energy., 7(4), 3-9.   DOI
3 Sweygers, N., Somers, M.H., and Appels, L., 2018, "Optimization of hydrothermal conversion of bamboo (Phyllostachys aureosulcata) to levulinic acid via response surface methodology", J. Environ. Manage., 219, 95-102.   DOI
4 Lee, J.S., and Park, T.H. 2006, "Current aspects and future prospects on bioengergy R&D", New. Renew, Energy., 2(1), 14-20.
5 Schmidt, L.M., Mthembu, L.D., Reddy, P., Deenadayalu, N., Kaltschmitt, M., and Smirnova, I., 2017, "Levulinic acid production integrated into a sugarcane bagasse based biorefinery using thermal-enzymatic pretreatment", Ind. Crops and Prod., 99, 172-178.   DOI
6 Zhou, Y., Chen, H., Qi, F., Zhao, X., and Liu, D. 2015, "Non-ionic surfactants do not consistently improve the enzymatic hydrolysis of pure cellulose", Bioresour. Technol., 182, 136-143.   DOI
7 Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., and Crocker, D.L.A.P. 2008, "Determination of structural carbohydrates and lignin in biomass", Laboratory Analytical Procedure., 1617(1), 1-16.
8 Wang, L., Templer, R., and Murphy, R.J., 2012, "High-solids loading enzymatic hydrolysis of waste papers for biofuel production", Appl. Energy., 99, 23-31.   DOI
9 Nishimura, H., Tan, L., Kira, N., Tomiyama, S., Yamada, K., Sun, Z.Y., Tang, Y.Q., Morimura, S., and Kida, K., 2017, "Production of ethanol from a mixture of waste paper and kitchen waste via a process of successive liquefaction, presaccharification, and simultaneous saccharification and fermentation", Waste Manag., 67, 86-94.   DOI
10 Li, X., Li, M., Pu, Y., Ragauskas, A.J., Klett, A.S., Thies, M., and Zheng, Y., 2018, "Inhibitory effects of lignin on enzymatic hydrolysis: Therole of lignin chemistry and molecular weight", Renew. Energ., 123(2), 664-674.   DOI
11 Lee, C.K., Darah, I., and Ibrahim, C.O., 2007, "Enzymatic deinking of laser printed office waste papers: some governing parameters on deinking efficiency", Bioresour. Technol., 98(8), 1684-1689.   DOI
12 Nishimura, H., Tan, L., Sun, Z.Y., Tang, Y.Q., Kida, K., and Morimura, S., 2016, "Efficient production of ethanol from waste paper and the biochemical methane potential of stillage eluted from ethanol fermentation", Waste. Manag., 48, 644-651.   DOI
13 Jeong, S.Y., and Lee, J.W., 2020, "Improvement of biomass degradation by Fenton oxidation and reusability of the Fenton oxidation solution", New. Renew, Energy., 16(4), 83-91.   DOI
14 Kim, S.B., Shin, H.J., Kim, C.J., and Bak, Y.C., 2007, "Influence of surfactant on hydrolysis of used newspaper", KJBB J., 22(1), 43-47.
15 Lee, C.K., Ibrahim, D., and Omar, I.C., 2013, "Enzymatic deinking of various types of waste paper: efficiency and characteristics", Process. Biochem., 48(2), 299-305.   DOI
16 Choi, S., Song, C.W., Shin, J.H., and Lee, S.Y., 2015, "Biorefineries for the production of top building block chemicals and their derivatives", Metab, Eng., 28, 223-239.   DOI
17 Yan, K., Jarvis, C., Gu, J., and Yan, Y., 2015, "Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels", Renew. Sust. Energ. Rev., 51, 986-997.   DOI
18 Kaschuk, J. J., Lacerda, T. M., and Frollini, E., 2019, "Investigating effects of high cellulase concentration on the enzymatic hydrolysis of the sisal cellulosic pulp", Int. J. Biol. Macromol., 138, 919-926.   DOI
19 Bhatia, S.K., Jagtap, S.S., Bedekar, A.A., Bhatia, R.K., Patel, A.K., Pant, D., Banu, J.R., Rao, C.V., Kim, Y.G., and Yang, Y.H., 2020, "Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges", Bioresour. Technol., 300, 122724.   DOI
20 Van Dyk, J.S. and Pletschke, B.I., 2012, "A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy", Biotechnol. Adv., 30(6), 1458-1480.   DOI
21 Dutta, S., Iris, K.M., Tsang, D.C., Su, Z., Hu, C., Wu, K.C., Yip, C.K., Ok, Y.S., and Poon, C.S., 2020, "Influence of green solvent on levulinic acid production from lignocellulosic paper waste", Bioresour. Technol., 298, 122544.   DOI
22 Lim, B.K., Yang, J,K., and Lee, J.Y. 1997, "The Production of Alcohol Municipal Waste(II)", J. Korean Wood Sci. Technol, 25(1), 65-70.