Synthesis of Polyurethane Foam with Soybean Oil

콩기름을 이용한 폴리우레탄 포옴의 합성

  • Yang, Do Hyeon (Department of Chemistry, Chungbuk National University) ;
  • Lee, Kwang Young (Department of Chemistry, Chungbuk National University) ;
  • Shin, Jae Sup (Department of Chemistry, Chungbuk National University)
  • 양도현 (충북대학교 자연과학대학 화학과) ;
  • 이광용 (충북대학교 자연과학대학 화학과) ;
  • 신재섭 (충북대학교 자연과학대학 화학과)
  • Received : 1999.04.19
  • Accepted : 1999.07.10
  • Published : 1999.08.10

Abstract

The polyol was synthesized from soybean oil. Soybean oil was epoxized with peracetic acid, and was reacted with methanol in a sulfuric acid catalyst. OH value of synthesized polyol was 186(mg KOH/g). The polyurethane foam was synthesized with silicon type B-8409 as a surfactant, distilled water as a blowing agent, dimethylcyclohexylamine as a catalyst, and polymeric MDI. The density, the compressive strength, the compressive modulus, and the cell structure of the synthesized foam were investigated. The foam was prepared with changing the mole ratio of MDI, and the amount of water, surfactant, and catalyst. As the MDI index was increased, the density and the compressive property of the foam were increased.

식물성 천연 유지인 콩기름을 peracetic acid로 에폭시화 시킨 후에 황산 촉매 하에서 메탄올과 반응시켜서 OH-value가 186(mg KOH/g)인 폴리올을 합성하였다. 합성한 폴리올에 계면활성제로는 silicon계 B-8409를, 발포제로는 증류수를, 촉매로는 dimethylcyclohexylamine을, 이소시아네이트로는 polymeric MDI를 사용하여 폴리우레탄 포옴을 합성하였다. 형성된 포옴의 밀도, 압축강도, 압축탄성률, cell의 구조 등을 조사하였다. MDI의 당량비를 변화시켜 가며 포옴을 형성시켜 보았으며, MDI index를 105로 고정하고, 발포제, 계면활성제, 촉매의 양을 각각 변화시켜 가며 포옴을 형성시켜 보았다. MDI index가 증가할수록 밀도와 압축 물성이 증가하였다.

Keywords

Acknowledgement

Supported by : 과학재단

References

  1. Rubber Chem. Technol. v.39 A. N. Gent;K. C. Rusch
  2. J. Cellular Plastics v.1 R. H. Harding
  3. J. Cellular Plastics v.39 A. N. Gent;K. C. Rusch
  4. Rubber Chem. Technol. v.33 J. H. Saunder
  5. J. Appl. Polym. Sci. v.13 K. C. Rusch
  6. J. Cellular Plastics v.21 L. D. Booth;W. M. Lee
  7. Polym. Eng. Sci. v.15 S. Y. Hobbs
  8. J. Appl. Polym. Sci. v.59 M. E. Wilson;M. Hu;M. J. Kurth;Y. L. Hsieth;J. M. Krochta
  9. J. Cellular Plastics v.17 G. Rossmy;H. J. Kolllmeier;W. Lidy;H. Schator;M. Wiemann
  10. J. Appl. Polym. Sci. v.1 A. N. Gent;A. G. Thomas
  11. J. Cellular Plastics v.5 R. Chan;M. Nakamura
  12. Polym. Eng. Sci. v.15 G. Menges;F. Knipschild
  13. J. Cellular Plastics v.15 I. S. Becharn;R. L. Mascioli
  14. Rubber Chem. Technol. v.32 J. H. Saunders
  15. J. Appl. Polym. Sci. v.59 S. Haseebuddin;K. V. S. N. Raju;D. Krishna;P. J. Reddy;M. Yaseen
  16. Rubber Chem. Technol. v.45 F. E. Critchfield;J. V. Koleske;D. C. Priest
  17. Rubber Chem. Technol. v.52 Y. Minoura;S. Yamashita;M. H. Okamoto;T. Matsuo;M. Izawa;D. I. Kohmoto
  18. J. Cellular Plastics v.15 I. Bechara
  19. J. Cellular Plastics v.16 D. A. Brandreth;H. G. Ingersoll
  20. J. Cellular Plastics v.18 F. J. Norton
  21. J. Am. Dietetic A. v.68 C. A. Brignoli;J. E. Kinsella;J. L. Weihrauch
  22. J. Am Oil Chem. Soc. v.70 F. D. Gunstone
  23. Polym. Mater. Sci. Eng. v.70 I. Frischinger;S. Dirlikov