• Title/Summary/Keyword: sulfur fugacity

Search Result 43, Processing Time 0.021 seconds

Ore Minerals and Geochemical Environments at the Jinwon Pb-Zn Deposit (진원 연-아연 광상의 광석광물과 생성환경)

  • Cho, Young-Ki;Lee, In-Gyeong;Choi, Sang-Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.337-346
    • /
    • 2006
  • The Jinwon Pb-Zn deposit is located within the Precambrian Youngnam Massif. Ore mineralization at the Jinwon deposit occurred in quartz veins that filled fractures in the Hongjesa granite. Mineral paragenesis can be divided into two stages(stage I and II). Stage I, at which the precipitation of major ore minerals occurred, is further divided into two substages with paragenetic time based on minor fractures and discernible mineral assemblages: substage la is characterized by pyrite, arsenopyrite ($28.4{\sim}30.3$ atomic % As), pyrrhotite, magnetite, chalcopyrite, sphalerite ($13.1{\sim}16.0$ mole % FeS) assemblages; substage $I_a$ is represented by main precipitation of Zn, Pb minerals and is characterized by sphalerite ($15.1{\sim}19.0$ mole % FeS), galena, miargyrite, argentile assemblages. Stage II is economically barren quartz veins. Thermodynamics study is used to estimate changes in chemical conditions of the hydrothermal fluids during stage I mineralization, the main ore deposition period at the Jinwon hydrothermal system. The range of estimated sulfur fugacity ($fs_2$) was from $10^{-7}\;to\;10^{-16}$ atm and oxygen fugacity ($fo_2$) was in the range of $10^{-32.8}{\sim}10^{-38.5} atm$. Carbon dioxide fugacity ($fco_2$) was $<10^{-0.6} atm$.

Au-Ag Minerals and Genetic Environments from the Yeongdeog Gold-Silver Deposits, Korea (영덕(盈德) 금(金)-은광상(銀鑛床)에서 산출(産出)되는 금(金)-은광물(銀鑛物)과 광상(鑛床)의 생성환경(生成環境))

  • Lee, Hyun Koo;Yoo, Bong-Cheal;Kim, Sang Jung
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.541-551
    • /
    • 1995
  • The Yeongdeog gold-silver deposits at Jipum, Gyeongsangbugdo, is of a middle Paleogene $(45.52{\pm}1.02Ma)$ vein type, and is hosted in shale and sandstone of Cretaceous age. Based on mineral paragenesis, vein structure and mineral assemblages, the ore mineralization can be divided into two distinct depositional stages. The early stage is associated with base-metals such as pyrite, arsenopyrite (27.99~30.99 at%), hematite, rutile, pyrrhotite, sphalerite (10.53~18.42 FeS mole%), chalcopyrite and galena with wallrock alteration such as chlorite, sericite and pyrite. The late stage is characterized by the Au-Ag mineralization such as electrum, Ag-bearing tetrahedrite, freibergite, pyrargyrite, unidentified mineral, pyrite, sphalerite (1.08~5.57 FeS mole%), chalcopyrite and galena. Fluid inclusion data indicate that fluid temperatures and salinities range from 343 to $227^{\circ}C$ and from 8.3 to 5.7 wt% eq. NaCl in early stage, respectively. Temperatures and salinities of NaCl eq. wt% range from 299 to $225^{\circ}C$ and from 12.9 to 4.3 in late stage, respectively. They suggest that complex cooling histories were occured by the mixing of the fluids. Sulfur fugacity $(-logfs_2)$ deduced by mineral assemblages and composition ranges from 8.3 to 14.7 atm. in early stage, and from 8.8 to 14.5 atm. in late stage. It suggests that the mineralization was related to decrease of temperature in early stage and fluctuations of $fS_2$ with decrease of temperature in late stage. Sulfur and oxygen isotope compositions are 4.48~5.60‰ and 9.25~10.8% in early stage, and late stage is 4.84~7.00‰ and 5.7‰, respectively. It indicated that hydrothermal fluids may be magmatic origin with some degree of mixing of another water during paragenetic time.

  • PDF

Gold and Silver Mineralization in the Yonghwa Mine (용화광산(龍化鑛山)의 금은광화작용(金銀鑛化作用))

  • Youn, Seok-Tai;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.24 no.2
    • /
    • pp.107-129
    • /
    • 1991
  • The Yonghwa gold-silver deposits are emplaced along $N15^{\circ}{\sim}25^{\circ}W$ trending fissures in middle Cretaceous porphyritic granite or Precambrian Sobaegsan gneiss complex. The results of paragenetic studies suggest that vein filling can be subdivided into four identifiable stages; state I: the main sulfide stage, characterized by base-metal sulfide minerals, iron oxides and minor electrum, stage II: electrum stage, stage III: electrum and silver-bearing sulfosalts stage, stage IV: post ore stage of carbonates and quartz. The ore mineralogy suggests that depositional temperature of the formation of the gold and silver minerals are estimated as 200 to $250^{\circ}C$ and 140 to $180^{\circ}C$, respectively. Sulfur fugacity of the formation of the gold and silver minerals are estimated as $10^{-14.0}$ to $10^{-12.2}$ atm and $10^{-18.5}$ to $10^{-17.2}$ atm, respectively. A consideration of the pressure regime during ore deposition bases on the fluid inclusion evidence of boiling suggests lithostatic pressure of less than 180 bars. This range of pressure indicate that vein system lay at depth of 700m below the surface at the time during mineralization. Salinities of ore-bearing fluids range from 0.4 to 6.9 wt.% equivalent NaCl. The sulfur and carbon isotopic data reveal that these elements were probably derived from a deep-seated source. The ${\delta}^{18}O$ of the hydrothermal fluid was determined from ${\delta}^{18}O$ values of quartz and calcite. Oxygen and hydrogen isotopic studies reveal that meteoric water dominate over ore-bearing fluid.

  • PDF

Ore Minerals and Mineralization Conditions of Magnetite Deposits in the Janggun Mine, Korea (장군광산(將軍鑛山)의 자철석광상(磁鐵石鑛床)에서 산출(産出)되는 광석광물(鑛石鑛物)과 생성조건(生成條件))

  • Lee, Hyun Koo;Lee, Chan Hee;Song, Suckhwan
    • Economic and Environmental Geology
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 1996
  • Magnetite ores of the Janggun mine are embedded in dolomitic limestone of the Janggun Limestone Formation contacting with Chunyang granite, and are closely associated with skarn minerals. Mineralization of magnetite deposits can be divided into two stages as deep-seated skarn stage and shallow hydrothermal replacement stage. Mineralogies of skarn stage consist of magnetite, pyrrhotite and base-metal sulfides, and those of hydrothermal stage is base-metal sulfides, native bismuth, bismuthinite, tetrahedrite, boulangerite, bournonite and stannite. The FeS mole % in sphalerite and As atom % in arsenopyrite range from 22.47 to 26.30 and from 31.39 to 31.66 in skarn stage, and are from 17.54 to 32.54 and 28.87 to 30.70 in hydrothermal stage, respectively. Based on mineralization characteristics, mineral assemblages, chemical compositions and thermodynamic considerations, formation temperatures, sulfur fugacities ($-logf_2$), pH and oxygen fugacity ($-logfo_2$) estimated to be from 345 to $382^{\circ}C$, from 8.1 to 9.7atm, from 6.5 to 7.2 and from 30.5 to 31.2atm in the skarn stage, respectively, and temperature and $-logfs_2$ are from 245 to $315^{\circ}C$ and from 10.4 to 13.2atm in the hydrothermal stage.

  • PDF

Mineralization and Genetic Environments of the Central and Main Orebodies in the Manjang Deposit, Goesan (만장광상 중앙광체와 본광체의 광화작용과 생성환경)

  • Yu, Hyunmin;Shin, Dongbok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.87-101
    • /
    • 2018
  • The Manjang deposit developed in the Hwajeonri formation of the Okcheon metamorphic belt consists of the Central and Main orebodies of Cu-bearing hydrothermal vein type and the Western orebody of Fe-skarn type. This study focuses on the Cu mineralization of the Central and Main orebodies to compare with the genetic environments of the Western orebody previously studied. The Central orebody produced pyrrhotite and chalcopyrite as major ore minerals with vein texture, while the Main orebody contains pyrite, arsenopyrite, and chalcopyrite as major ore minerals with vein, massive, and brecciated texture. Sphalerite, galena, magnetite, ilmenite, rutile, cassiterite, wolframite, and stannite are also accompanied. Local occurrence of skarn is dominated by grossular and hedenbergite, reflecting the reduced condition of the skarnization. Geothermometries of sphalerite-stannite in the Central orebody and arsenopyrite-pyrite in the Main orebody indicate the formation temperature of $204-263^{\circ}C$ and $383-415^{\circ}C$, respectively. Sulfur fugacity of $10^{-6}-10^{-7}atm$. in the Main orebody decreased toward the Central orebody. Sulfur isotope compositions of sulfide minerals from the Central and Main orebodies are 4.6-7.9‰ and 4.3-7.0‰, respectively, reflecting magmatic origin with slight influence by host rock. Considering ore mineralogy, texture as well as physicochemical conditions, the Main and Central orebodies of hydrothermal Cu mineralization reflect the characteristics of proximal and distal type ore mineralization, respectively, related to hidden igneous rocks, and they were generated under different hydrothermal systems from the Fe-skarn Western orebody.

Ore Minerals, Fluid Inclusion and Stable Isotope Studies of the Bongsang Gold-silver Deposit, Republic of Korea (봉상 금-은광상의 광석광물, 유체포유물 및 안정동위원소 연구)

  • Yoo, Bong-Chul;Lee, Jong-Kil;Lee, Gil-Jae;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • The Bongsang gold-silver deposit consists of quartz veins that fill along the fault Bone within Cretaceous andesitic lapilli tuff. Mineralization is occurred within fault-breccia zones and can be divided into two stages. Stage I which can be subdivided into early and late depositional stages is main ore mineralization and stage II is barren. Stage I began with deposition of wall-rock alteration minerals and base-metal sulfides, and was deposited by later native silver, Ag-bearing tetrahedrite, polybasite and base-metal sulfides such like pyrite, sphalerite, chalcopyrite and galena. Fluid inclusion data indicate that homogenization temperatures and salinities of stage I range from 137 to $336^{\circ}C$ and from 0.0 to 10.6 wt.% NaCl, respectively. It suggests that ore forming fluids were cooled and diluted with the mixing of meteoric water. Also, temperature and sulfur fugacity deduced mineral assemblages of late stage I are $<210^{\circ}C\;and\;<10^{-15.4}$ atm, respectively. Sulfur(3.4%o) isotope composition indicates that ore sulfur was mainly derived from a magmatic source as well as the host rocks. The calculated oxygen{2.9%o, 10.3%o(quartz: 7.9%o, 8.9%o, calcite: 2.9%o, 10.3%o)}, hydrogen(-75%o) and carbon(-7.0%o, -5.9%o) isotope compositions indicate that hydrothermal fluids may be meteoric origin with some degree of mixing of another meteoric water for paragenetic time.

Fluid Inclusion and Sulfur Stable Isotope of Buckchang Deposit, Korea (북창광상의 유체포유물 및 황안정동위원소 연구)

  • Chung, Jae-Il;Kim, Seon-Young;Na, Choon-Ki;Lee, In-Sung;Ripley, E.M.
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.677-687
    • /
    • 1996
  • The Buckchang deposits which is located in the Ockcheon metamorphic zone, are emplaced along $N20-30^{\circ}E$ trending fissure sets. So it is a sort of fissure-filling ore deposits. The results of mineral paragenetic studies suggest two stages of hydrothermal mineralization; stage I: base-metal sulfides stage, stage II: late base-metal sulfides, electrum and silver-bearing sulfosalts stage. The silver-bearing sulfosalts occured as the Buckchang mine are mainly argentite and, minor of canfieldite, tetrahedrite, etc. Au:Ag ratios of the electrums show a highly limited range of nearly 1:1 in atomic %. The temperature, salinity and pressure of the Buckchang deposits estimated from fluid inclusion and sulfur isotope studies are as follows; stage I: $174{\sim}250^{\circ}C$, 0.35~4.01 NaCl eq. wt.%, 0.40~1.00 Kbar, stage II: $138{\sim}222^{\circ}C$, 1.9~8.4 NaCl eq. wt.%, 0.22~0.53 Kbar. The estimated oxygen and sulfur fugacity during stage I mineralization, based on phase relation of associated minerals, range from $10^{-39.7}{\sim}10^{-44.7}$ atm. and $10^{-13.4}{\sim}10^{-18.1}$ atm., respectively. All these evidences suggest that the Buckchang deposits are polymetallic epithermal ore deposits.

  • PDF

Mineralogy and Genetic Environments of the Seongdo Pb-Zn deposit, Goesan (괴산 성도 연-아연 광상의 산출광물과 생성환경)

  • Ahn, Seongyeol;Shin, Dongbok
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.325-340
    • /
    • 2017
  • The Seongdo Pb-Zn deposit, located in the northwestern part of the Ogcheon Metamorphic Belt, consists of skarn ore replacing limestone within the Hwajeonri Formation of Ogcheon Group and hydrothermal vein ore filling the fracture of host rock. Skarn minerals comprise mostly hedenbergitic pyroxene, garnet displaying oscillatory zonal texture composed of grossular and andradite, and a small amount of wollastonite, tremolite, and epidote, indicating reducing condition of formation. Ore minerals of skarn ore include sphalerite and galena with a small amount of pyrite, pyrrhotite, and chalcopyrite. In hydrothermal vein ore, arsenopyrite, sphalerite, chalcopyrite, and pyrite occur with a small amount of galena, native Bi, and stannite. Chemical compositions of sphalerite vary from 17.4 mole% FeS in average for dark grey sphalerite, 3.6 mole% for reddish brown sphalerite in skarn ore, and to 10.3 mole% FeS in hydrothermal vein ore. In comparison with representative metallic deposits in South Korea on the FeS-MnS-CdS diagram, skarn and hydrothermal vein ore plot close to the field of Pb-Zn deposits and Au-Ag deposits, respectively. Arsenic contents of arsenopyrite in hydrothermal vein ore decrease from 31.93~33.00 at.% in early stage to 29.58~30.21 at.% in middle stage, and their corresponding mineralizing temperature and sulfur fugacity are $441{\sim}490^{\circ}C$, $10^{-6}{\sim}10^{-4.5}atm$. and $330{\sim}364^{\circ}C$, <$10^{-8}atm$. respectively. Phase equilibrium temperatures calculated from Fe and Zn contents for coexisting sphalerite and stannite in hydrothermal vein are $236{\sim}254^{\circ}C$. Sulfur isotope compositions are 5.4~7.2‰ for skarn ore and 5.4~8.4‰ for hydrothermal vein ore, being similar or slightly higher to magmatic sulfur, suggesting that ore sulfur was mostly of magmatic origin with partial derivation from host rocks. However, much higher sulfur isotope equilibrium temperatures of $549^{\circ}C$$487^{\circ}C$, respectively for skarn ore and hydrothermal ore, than those estimated from phase equilibria imply that isotopic equilibrium has not been fully established.

Gold and Silver Mineralization in the Dongweon Mine (동원광산의 금-은 광화작용)

  • Park, Hee-In;Park, Young-Rok
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.183-199
    • /
    • 1990
  • Ore deposits of Dongwon mine are composed of numerous gold and silver veins emplaced in sedimentary rocks of Cambrian Choseon Supergroup and granitoids of Cretaceous age. Ore veins of the mine can be divided into gold and silver veins on the base of vein structure, mineral assemblage and vein trends. Mutual relationships between gold and silver veins are uncertain. Gold veins are simple veins which are composed of base-metal sulfides, and electrum with quartz and ankerite. On the other hand, silver veins are complex veins which reveal three distinct stages of mineral deposition based on vein structure; stage I, deposition of small amounts of oxides and pyrite with quartz; stage II, deposition of base-metal sulfides, small amounts of Ag-bearing minerals, calcite and quartz; stage III, deposition of base metal sulfides, electrum, Ag-sulfosalts, native silver, carbonates and quartz. Homogenization temperature and salinity of fluid inclusion from quartz of gold vein are as follows; $229^{\circ}$ to $283^{\circ}C$, 4.7 to 6.4 wt.% equivalent NaCI. The ore mineralogy suggests that temperature(T) and sulfur fugacity($fs_2$) of the formation of the gold vein and stage III of silver vein are estimated as T ; $294^{\circ}$ to $318^{\circ}C$, $fs_2\;10^{-9.4}$ to $10^{-10.1}$ atm. and T; $240^{\circ}$ to $279^{\circ}C$, $fs_2;10^{-11.1}$ to $10^{-17.3}$ atm. respectively. Pressure condition during gold vein formation estimated from data of ore mineralogy and fluid inclusion range 500 to 750 bar.

  • PDF

Ore Minerals, Fluid Inclusions and Stable Isotopes of the Yucheon Bismuth Deposits, Korea (류천(柳川) 창연광상(蒼鉛鑛床) 광석광물(鑛石鑛物), 유체포유물(流體包有物) 및 안정동위원소(安定同位元素))

  • Lee, Hyun Koo;Yoo, Bong-Cheal;Kim, Sang Jung
    • Economic and Environmental Geology
    • /
    • v.29 no.2
    • /
    • pp.139-150
    • /
    • 1996
  • The Yucheon Bi deposits at Cheongha, Gyeongsangbugdo, is of a middle Paleogene (49 Ma) vein type, and is hosted in sandstone and shale of Banyawal formation in Cretaceous age. Based on mineral paragenesis, vein structure and mineral assemblages, two minera1ization stages were distinguished. The stage I consists of quartz with small amount of chlorite, pyrite, epidote, hal1oysite, vermiculite, serpentine and rutile associated with sericitization. The stage II is characterized by Bi minera1ization such as bismuthinite, Bi-Cu-Pb-S mineral, tetradymite, native gold, pyrite, pyrrhotite, arsenopyrite, wolframite, rutile, hematite, sphalerite, chalcopyrite, galena with alteration of sericite, chlorite, K-feldspar, albite and epidote. Fluid inclusion data indicate that fluid temperature and NaCl equivalent wt.% salinity range from 431 to $150^{\circ}C$ and from 19.2 to 0.18wt.% in the stage II. Evidence of boiling during the base-metal minera1ization indicates pressures 241 to 260 bars. Sulfur fugacity($-log\;f_{S2}$) deduced by mineral assemblages and compositions ranges from 5.1 to 5.7atm in early stage, from > 8.4 atm in middle stage and from 13.5 to 19.3 atm in late stage. It suggests that complex histories of progressive coo1ing, dilution and boiling were occurred by the mixing of the fluids. The ${\delta}^{34}S$, ${\delta}^{18}O$ and ${\delta}D$ data range from 2.5 to 3.9%, -0.5 to -4.1% and -29.7 to -47%, respectively. It indicated that hydrothermal fluids may be magmatic origin with boiling and mixing of meteoric water increasing paragenetic time.

  • PDF