Browse > Article

Ore Minerals and Geochemical Environments at the Jinwon Pb-Zn Deposit  

Cho, Young-Ki (Department of Earth and Environmental Sciences, Basic Sciences Research Institute, Chungbuk National University)
Lee, In-Gyeong (Department of Earth and Environmental Sciences, Basic Sciences Research Institute, Chungbuk National University)
Choi, Sang-Hoon (Department of Earth and Environmental Sciences, Basic Sciences Research Institute, Chungbuk National University)
Publication Information
Journal of the Mineralogical Society of Korea / v.19, no.4, 2006 , pp. 337-346 More about this Journal
Abstract
The Jinwon Pb-Zn deposit is located within the Precambrian Youngnam Massif. Ore mineralization at the Jinwon deposit occurred in quartz veins that filled fractures in the Hongjesa granite. Mineral paragenesis can be divided into two stages(stage I and II). Stage I, at which the precipitation of major ore minerals occurred, is further divided into two substages with paragenetic time based on minor fractures and discernible mineral assemblages: substage la is characterized by pyrite, arsenopyrite ($28.4{\sim}30.3$ atomic % As), pyrrhotite, magnetite, chalcopyrite, sphalerite ($13.1{\sim}16.0$ mole % FeS) assemblages; substage $I_a$ is represented by main precipitation of Zn, Pb minerals and is characterized by sphalerite ($15.1{\sim}19.0$ mole % FeS), galena, miargyrite, argentile assemblages. Stage II is economically barren quartz veins. Thermodynamics study is used to estimate changes in chemical conditions of the hydrothermal fluids during stage I mineralization, the main ore deposition period at the Jinwon hydrothermal system. The range of estimated sulfur fugacity ($fs_2$) was from $10^{-7}\;to\;10^{-16}$ atm and oxygen fugacity ($fo_2$) was in the range of $10^{-32.8}{\sim}10^{-38.5} atm$. Carbon dioxide fugacity ($fco_2$) was $<10^{-0.6} atm$.
Keywords
Jinwon Pb-Zn deposit; hydrothermal fluids; ore mineralization; mineral paragenesis; geochemical conditions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 박희인, 문상호, 우영 균 (1994) 상라광산의 연-아연 광화작용. 지질학회지, 30, 1-14
2 송용선, 이상만 (1989) 소백산육괴 중앙부 선캠브리아 변성암류의 암석학적 연구. 지질학회지, 25, 451-467
3 허순도, 박희인 (2000) 신정선 연-아연 광상의 광석 광물과 유체포유물 연구. 지질학회지, 36, 93-112
4 Barton, P.B.Jr. and Toulmin, P. III (1966) Phase relations involving sphalerite in the Fe-Zn-S system Econ. Geol., 61, 815-849   DOI
5 Barton, P.B.Jr. and Toulmin, P. III (1964) The e1ectrum tarnishing method for determination of the fugacity of sulfur in laboratory sulfide systems. Geochim. Cosmochim., Acta, 28, 619-640   DOI   ScienceOn
6 Helgeson, H.C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Amer. J. Sci., 267, 729-804   DOI
7 박희인, 배영부 (1995) 두서광산의 연-아연-동 광화 작용. 지질학회지, 31, 47-56
8 이종혁, 김용준, 최병열 (1993) 죽변-임원진도폭 지질보고서 1:5만. 한국자원연구소
9 최광준, 윤성택, 소칠섭 (1997) 광신 연-아연 광상의 유체포유물 및 안정동위원소 연구. 자원환경지질학회지, 30, 505-517
10 Shikazono, N. (1985) A comparison of temperatures estimated from the electrum-sphalerite-pyriteargentite assemblage and filling temperatures of fluid inclusions from epithermal Au-Ag vein-type deposits in Japan. Econ. Geol., 80, 1415-1424   DOI
11 Scott, S.D. and Barnes, H.L. (1971) Sphalerite geothermometry and geobarometry. Econ. Geol., 66, 653-669   DOI
12 강지훈, 김남훈, 박계헌, 송용선, 옥수석 (2004) 영양-울진지역 선캠브리아가 변성암류의 변형작용사. 암석학회지, 13, 179-190
13 대한광업진흥공사 (1980) 탐광굴진 제 5호
14 이현구, 김상중 (1997) 청송광산의 동-연-아연 광화 작용. 자원환경지질학회지, 30, 197-207
15 김형수, 이종혁 (1995) 분천과 홍제사 화강암질 편마암체의 변성작용. 암석학회지, 4, 61-87
16 이현구, 김상중 (1995) 감계 동-연-아연-금-은 광상의 광석광물과 유체포유물 연구. 자원환경지질학회지, 28, 9-17
17 이현구, 유봉철, 김상중 (1992) 충남 대봉 금,은 광상에서 산출되는 광석광물과 광상의 생성환경. 광산지질학회지, 25, 297-316
18 대한광업진흥공사 (1981 ) 한국의 광상 8호
19 대한광업진흥공사 (1986) 탐광굴진 제 7호
20 Shikazono, N. and Shimizu, M. (1987) Au/Ag ratio of mative gold and electrum and the geochemical environment of gold vein deposits in Japan. Mineraliurr deposita, 22, 309-314
21 정창식, 길영우, 김정민, 정연중, 임창복 (2004) 영남 육괴 북동부 죽변 지역 선캠브리아기 기반암류의 지구화학적 특정. 지질학회지 , 40, 481-499
22 S.H. Choi (1998) Geochemical Evolution of Hydrothermal Fluids at the Daejang Cu-Zn-Pb Vein Deposit, Korea. RESOURCE GEOLOGY, 48, 171-182   DOI   ScienceOn
23 대한광업진흥공사 (1987) 한국의 광상 10호
24 Kretschmar, U. and Scott, S.D. (1976) Phase relations involving arsenopyrite in the system Fe-As-S and their application. Can. Miner., 14, 364-386
25 Barton, P.B.Jr. and Skinner, B.J (1979), Sulfide mineral stabilities. In: Geochemistry of hydrothermal ore deposits (Barnes, H.L. Ed.). pp.798, Wiley and Sons Pub. Co., New York, 278-403