• Title/Summary/Keyword: sulfhydryl concentration

Search Result 37, Processing Time 0.03 seconds

Effect of Buthus on $Na^+-K^+-ATPase$ activity in cerebral synaptosomes (전갈(全蝎)이 뇌조직(腦組織)의 $Na^+-K^+-ATPase$ 활성(活性)에 미치는 영향(影響))

  • Yoon, Jong-Yeong;Shin, Hyeon-Chul;Yoon, Chul-Ho;Seo, Un-Kyo;Kim, Jong-Dae;Jeong, Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.431-441
    • /
    • 1998
  • This study was undertaken to determine whether Buthus exract(BTE) affects Na^+-K^+-ATPase$ activity of nervous tissues. The enzym activity was measured in synaptosomal fraction prepared from rabbit brain cortex. Na^+-K^+-ATPase$ activity was inhibited by BTE over concentration range of 0.05-0.5% in a dose-dependent manner. The enzyme activity was increased by an increase in $Na^+$ concentration from 5 to 100mM, $K^+$ concentration from 0.5 to 10mM, and $Mg^{2+}$ concentration from 0.2 to 5mM. These changes in ion concentrations did not produce any effect on the inhibitory effect of BTE on $Na^+-K^+-ATPase$ activity. An increase in ATP concentration from 0.1 to 3mM caused an increase in the enzyme activity. The inhibition of the enzyme activity by BTE were not different between two ATP concentrations. A sulfhydryl group protector DTT prevented PCMB-induced inhibition of $Na^+-K^+-ATPase$ activity, but the BTE-induced inhibition was not altered by DTT. The inhibition of enzyme activity by combination of ouabain and BTE was not different from that by Buthus alone. These results suggest that Buthus exerts inhibitory effect on $Na^+-K^+-ATPase$ activity in cerebral synaptosomes, and the action mechansim is similar to that of ouabain.

  • PDF

Effects of NaOCl on Neuronal Excitability and Intracellular Calcium Concentration in Rat Spinal Substantia Gelatinosa Neurons

  • Lee, Hae In;Park, A-Reum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.38 no.1
    • /
    • pp.5-12
    • /
    • 2013
  • Recent studies indicate that reactive oxygen species (ROS) can act as modulators of neuronal activity, and are critically involved in persistent pain primarily through spinal mechanisms. In this study, we investigated the effects of NaOCl, a ROS donor, on neuronal excitability and the intracellular calcium concentration ($[Ca^{2+}]_i$) in spinal substantia gelatinosa (SG) neurons. In current clamp conditions, the application of NaOCl caused a membrane depolarization, which was inhibited by pretreatment with phenyl-N-tert-buthylnitrone (PBN), a ROS scavenger. The NaOCl-induced depolarization was not blocked however by pretreatment with dithiothreitol, a sulfhydryl-reducing agent. Confocal scanning laser microscopy was used to confirm whether NaOCl increases the intracellular ROS level. ROS-induced fluorescence intensity was found to be increased during perfusion of NaOCl after the loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF$-DA). NaOCl-induced depolarization was not blocked by pretreatment with external $Ca^{2+}$ free solution or by the addition of nifedifine. However, when slices were pretreated with the $Ca^{2+}$ ATPase inhibitor thapsigargin, NaOCl failed to induce membrane depolarization. In a calcium imaging technique using the $Ca^{2+}$-sensitive fluorescence dye fura-2, the $[Ca^{2+}]_i$ was found to be increased by NaOCl. These results indicate that NaOCl activates the excitability of SG neurons via the modulation of the intracellular calcium concentration, and suggest that ROS induces nociception through a central sensitization.

Plasmid DNA damage by neutron and ${\gamma}-$ radiation (중성자 및 ${\gamma}-ray$ 조사에 따른 plasmid DNA 의 손상 관찰)

  • Cheon, Gi-Jeong;Kim, Myeong-Seop;Seo, Won-Suk
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2004.10a
    • /
    • pp.1212-1213
    • /
    • 2004
  • The plasmid was used pBR 322 and ${\varphi}X174$ RF DNA. In neutron experiment, damage of pBR 322 and ${\varphi}X174$ RF DNA were observed according to increasing concentration of BSH and neutron dose. Damage of plasmid DNA appeared obvious by increasing of BSH and neutron irradiation. In ${\gamma}-$ radiation experiment, it was carried out like above neutron experiment but damages of two plasmid appeared no differences from the control unlike neutron result.

  • PDF

Purification and Properties of Alcohol Oxidase Produced by Hnasenula sp. MS-364 (Hansenula sp. MS-364가 생산하는 Alcohol Oxidase 의 정제 및 성질)

  • 김병호;김형만;권태종
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.1
    • /
    • pp.60-67
    • /
    • 1995
  • Methanol assimilating yeast, Hansenula sp. MS-364 that has high productivity with methanol as carbon and energy source has been preserved at dept. of Microbiological engineering. Purification and properties of alcohol oxidase (E.C.1.1.3.13: oxygen oxidoreductase) were investigated in the methanol assimilating yeast, Hansenula sp. MS-364. Alcohol oxidase is related to the catalytic reaction that degrades alcohol to aldehyde and peroxide. The methanol oxidizing enzyme was purified by ammonium sulfate precipitation, DEAE-Sephadex A-50 chromatography and gel filtration on Sepharose 6B from cell-free extract. The purified enzyme preparation gave a single band in the sodium dodesyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of the enzyme was calculated to be about 576,000 and molecular weight of subunit was also calculated to be 72,000. The optimal pH and temperature of the enzyme reaction were pH 7.5 and 37$\circ$C, respectively. The enzyme was unstable in acidic pH and higher temperature. The enzyme was not specific for methanol and also oxidized lower primary alcohols. The Km value for methanol was 2.5 mM and that for ethanol was 1.66 mM. The enzyme was heavily inhibited by metal ions such as Hg$^{2+}$, Ag$^{2+}$, Cu$^{2+}$. The high concentration of EDTA and sulfhydryl reagents strongly inhibited the enzyme activity. The component of coenzyme was determined to flavin adenine dinucleotide.

  • PDF

Effects of newly synthesized benzimidazole derivatives on gastric H^+/K^+$ ATPase

  • Cheon, Hyae-Gyeong;Yum, Eul-Kgun;Kim, Sung-Soo
    • Archives of Pharmacal Research
    • /
    • v.19 no.2
    • /
    • pp.126-131
    • /
    • 1996
  • The effects of various synthetic benzimidazole derivatives on gastric H^+/K^+$ATPase activity in vitro were examined. The results showed that the effects of substituents on the benzimidazole ring were not significant. However, replacement of sulfoxide connecting two ring systems to sulfide resulted in a completely inactive compound in vitro, suggesting the essential role of sulfoxide group in the inhibition. In addition, compounds with 5 or 6-membered oxacyclic substituents attached to the pyridine ring displayed the most effective inhibitory activity. Among these derivatives, AU-47 was the most potent, and detailed mechanistic studies with the compound were carried out. AU-47 inhibited gastricH^+/K^+$ATPase in a concentration and time dependent manner with 50% inhibition at $6\muM$. The presence of sulfhydryl reducing agents or substrate analogue protected H^+/K^+$ATPase from the inactivation. The inhibition by AU-47 was potentiated by acid pretreatment of the compound, suggesting the structural conversion of AU-47 into a more active intermediate which was favored in acidic condition. Consistent with in vitro results, AU-47 inhibited in vivo gastric acid secretion. The results suggest that AU47 is a relevant candidate for the development of new antiulcer agent.

  • PDF

Effect of Heat-Treat Methods on the Soluble Calcium Levels in the Commercial Milk Products

  • Yoo, Sung-Ho;Kang, Seung-Bum;Park, Jin-Ho;Lee, Kyung-Sang;Kim, Jin-Man;Yoon, Sung-Sik
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.369-376
    • /
    • 2013
  • Milk is well known to be rich in some nutrients such as protein, calcium, phosphorus, and vitamins. In particular, absorption and bioavailability of calcium receive lots of attention because calcium is very little absorbed until it is changed to the ionized form in the intestine. In this study, concentration of the soluble calcium was determined in the commercial bovine milk products, which were processed by different heat-treatment methods for pasteurization. As for general constituents, lactose, fat, protein, and mineral were almost same in the liquid milk products by different processors. Ultrafiltration of the skimmed milk caused little change in the permeate as for lactose content but both fat and protein decreased. pH values ranges from 6.57-6.62 at room temperature and slightly increase after centrifugation, 10,000 g, 10 min. Rennet-coagulation activity was the lowest in the ultra high temperature (UHT-)milk compared to the low temperature long time (LTLT-) and high temperature short time (HTST-)milk products. Each bovine milk products contains 1056.5-1111.3 mg/kg of Ca. The content of sulfhydryl group was the lowest in raw milk compared to the commercial products tested. For the skimmed milks after ultrafiltration with a membrane (Mw cut-off, 3 Kd), soluble Ca in the raw milk was highest at 450.2 mg/kg, followed by LTLT-milk 336.4-345.1 mg/kg, HTST-milk 305.5-313.3 mg/kg, UHT-milk 370.3-380.2 mg/kg in the decreasing order. After secondary ultrafiltration with a membrane (Mw cut-off, 1 kD), total calcium in raw milk had a highest of 444.2 mg/kg, and those in the market milk products. As follow: UHT-milk, 371.3 to 378.2 mg/kg; LTLT-milk, 333.3 to 342.2 mg/kg; HTST-milk 301.9 to 311.2 mg/kg in a decreasing order.

Effects of Loquat (Eriobotrya japonica Lindl.) Leaf Extract with or without Ascorbic Acid on the Quality Characteristics of Semi-Dried Restructured Jerky during Storage

  • Kim, Se-Myung;Kim, Tae-Kyung;Kang, Min-Cheol;Cha, Ji Yoon;Yong, Hae In;Choi, Yun-Sang
    • Food Science of Animal Resources
    • /
    • v.42 no.4
    • /
    • pp.566-579
    • /
    • 2022
  • Deterioration of jerky during storage is a major concern; this is usually combated with natural or synthetic antioxidants. This study aimed to evaluate the quality characteristics of semi-dried restructured jerky with and without loquat leaf extract (LE) powder and ascorbic acid (AA) during storage for 180 days. The jerkies were formulated with 0%, 0.15%, and 0.3% LE and/or 0.05% AA (Control, no antioxidant; AA, 0.05% AA; LE 0.15, 0.15% loquat LE; LE 0.15-AA, 0.15% loquat LE+0.05% AA; LE 0.3, 0.3% loquat LE; LE0.3-AA, 0.3% loquat LE+0.05% AA). LE is a phenolic compound, whose 1,1-diphenyl-2-picrylhydarzyl radical scavenging activity and metal chelating activity were found to be higher than AA. All antioxidant combinations having higher LE concentration and containing AA were effective in delaying protein and lipid oxidation compared to the control or AA. At the end of storage period, LE 0.15-AA and AA had higher CIE a* and lower shear force than the control. Therefore, the combination of 0.15% LE and 0.05% AA can result in reduced protein and lipid oxidation without any negative effect on the quality characteristics of semi-dried restructured jerky.

Characterization of Extended Spectrum $\beta$-Lactamase Genotype TEM, SHV, and CTX-M Producing Klebsiella pneumoniae Isolated from Clinical Specimens in Korea

  • Kim Yun-Tae;Kim Tae-Un;Baik Hyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.889-895
    • /
    • 2006
  • To investigate the antibiotic-resistant patterns and the gene types of extended-spectrum $\beta$-lactamase (ESBL)-producing Klebsiella pneumoniae, we collected 226 Klebsiella pneumoniae strains from three general hospitals with more than 500 beds in Busan, Korea from September 2004 to October 2005, The minimum inhibitory concentration (MIC) of antibiotics was measured using the Gram-negative susceptibility (GNS) cards of Vitek (Vitek system, Hazelwood Inc., MO, U.S.A.). Of the 226 K, pneumoniae isolates, 65 ESBL-producing K. pneumoniae strains were detected by the Vitek system and confirmed by the double-disk synergy test. TEM (Temoniera) type, SHV (sulfhydryl variable) type, and CTX-M (cefotaxime) type genes were detected by polymerase chain reaction. All 65 K. pneumoniae strains were resistant to ampicillin, cefazolin, cefepime, ceftriaxone, and aztreonam, and 83.0% of the organisms were resistant to ampicillin/sulbactam, 66.1% to tobramycin, 67.6% to piperacillin/tazobactam, 61.5% to ciprofloxacin, and 47.6% to trimethoprim/sulfamethoxazole, and 43.0% to gentamicin. TEM-type ESBLs (TEM-1 type, -52 type) were found in 64.6% (42 of 65) of the isolates, SHV-type ESBLs (SHV-2a type, -12 type, -28 type) in 70.7% (46 of 65) of isolates, and CTX-M-type ESBLS (CTX-M-15 type) in 45% (29 of 65) of isolates. Of the 65 ESBL-producing K. pneumoniae strains, two strains were found to harbor blaSHV-28, which were detected in Korea for the first time. Therefore, more investigation and research on SHV-28 are needed in order to prevent the ESBL type-producing K. pneumoniae from spreading resistance to oxyimino cephalosporin antibiotics.

Antioxidant Effects of Gamma-oryzanol on Human Prostate Cancer Cells

  • Klongpityapong, Papavadee;Supabphol, Roongtawan;Supabphol, Athikom
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5421-5425
    • /
    • 2013
  • Background: To assess the antioxidant effects of gamma-oryzanol on human prostate cancer cells. Materials and Methods: Cytotoxic activity of gamma-oryzanol on human DU145 and PC3 prostate cancer cells was determined by proliferation assay using 3-(4, 5-dimethylthiazol, 2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) reagent. mRNA levels of genes involved in the intracellular antioxidant system, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glutathione reductase (GSR) were determined by reverse transcription-polymerase chain reaction (RT-PCR). Cancer cell lysates were used to measure lipid peroxidation using thiobarbituric acid reactive substance (TBARS). Glutathione contents of the cell lysates were estimated by the reaction between sulfhydryl group of 5, 5'-dithio (bis) nitrobenzoic acid (DTNB) to produce a yellow-color of 5-thio-2-nitrobenzoic acid using colorimetric assay. Catalase activity was also analysed by examining peroxidative function. Protein concentration was estimated by Bradford's assay. Results: All concentrations of gamma-oryzanol, 0.1-2.0mg/ml, significantly inhibited cell growth in a dose- and time-dependent fashion in both prostate cancer cell lines, DU145 and PC3. Gene expression of catalase in DU145 and PC3 exposed to gamma-orizanol at 0.5mg/ml for 14 days was down regulated, while mRNA of GPX was also down regulated in PC3. The MDA and glutathione levels including catalase activity in the cell lysates of DU145 and PC3 treated with gamma-oryzanol 0.1 and 0.5mg/ml were generally decreased. Conclusions: This study highlighted effects of gamma-oryzanol via the down-regulation of antioxidant genes, catalase and GPX, not cytotoxic roles. This might be interesting for adjuvant chemotherapy to make prostate cancer cells more sensitive to free radicals. It might be useful for the reduction of cytotoxic agents and cancer chemoprevention.

Studies on the Mechanism of Action of the Gastric $H^{+}$+$K^{+}$ ATPase Inhibitor KH 3218

  • Cheon, Hyae-Cyeong;Kim, Hyo-Jung;Yum, Eul-Kgun;Cho, Sung-Yun;Kim, Do-Yeob;Yang, Sung-Il
    • Biomolecules & Therapeutics
    • /
    • v.3 no.3
    • /
    • pp.205-209
    • /
    • 1995
  • The novel compound KH 3218 was synthesized and evaluated for its ability to inhibit the gastric H$^{+}$$K^{+}$ ATPase activity in vitro as well as to lessen gastric acid secretion in vivo. KH 3218 inhibited rabbit gastric H$^{+}$$K^{+}$ ATPase in a concentration and time dependent manner. $IC_{50}$/ value was estimated to be about 15 $\mu$M. The inhibition of the H$^{+}$$K^{+}$ ATPase by KH 3218 was blocked by sulfhydryl reducing agents, dithiothreitol or $\beta$-mercaptoethanol. The inhibition of the enzyme was not reversible by 50 fold dilution of the incubation mixtures, suggesting the irreversible nature of the inactivation. In the pylorus-ligated rift, KH 3218 reduced the total acid output as compared with the control. In addition, KH 3218 was capable of inhibiting H. pylori urease activity. These data suggest that KH 3218 is a potent inhibitor for H$^{+}$$K^{+}$ ATPase activity as well as for gastric acid secretion, and has a potential to be developed as a novel antiulcer agent.

  • PDF