Browse > Article

Characterization of Extended Spectrum $\beta$-Lactamase Genotype TEM, SHV, and CTX-M Producing Klebsiella pneumoniae Isolated from Clinical Specimens in Korea  

Kim Yun-Tae (Department of Microbiology, College of Natural Science, Pusan National University)
Kim Tae-Un (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan)
Baik Hyung-Suk (Department of Microbiology, College of Natural Science, Pusan National University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.6, 2006 , pp. 889-895 More about this Journal
Abstract
To investigate the antibiotic-resistant patterns and the gene types of extended-spectrum $\beta$-lactamase (ESBL)-producing Klebsiella pneumoniae, we collected 226 Klebsiella pneumoniae strains from three general hospitals with more than 500 beds in Busan, Korea from September 2004 to October 2005, The minimum inhibitory concentration (MIC) of antibiotics was measured using the Gram-negative susceptibility (GNS) cards of Vitek (Vitek system, Hazelwood Inc., MO, U.S.A.). Of the 226 K, pneumoniae isolates, 65 ESBL-producing K. pneumoniae strains were detected by the Vitek system and confirmed by the double-disk synergy test. TEM (Temoniera) type, SHV (sulfhydryl variable) type, and CTX-M (cefotaxime) type genes were detected by polymerase chain reaction. All 65 K. pneumoniae strains were resistant to ampicillin, cefazolin, cefepime, ceftriaxone, and aztreonam, and 83.0% of the organisms were resistant to ampicillin/sulbactam, 66.1% to tobramycin, 67.6% to piperacillin/tazobactam, 61.5% to ciprofloxacin, and 47.6% to trimethoprim/sulfamethoxazole, and 43.0% to gentamicin. TEM-type ESBLs (TEM-1 type, -52 type) were found in 64.6% (42 of 65) of the isolates, SHV-type ESBLs (SHV-2a type, -12 type, -28 type) in 70.7% (46 of 65) of isolates, and CTX-M-type ESBLS (CTX-M-15 type) in 45% (29 of 65) of isolates. Of the 65 ESBL-producing K. pneumoniae strains, two strains were found to harbor blaSHV-28, which were detected in Korea for the first time. Therefore, more investigation and research on SHV-28 are needed in order to prevent the ESBL type-producing K. pneumoniae from spreading resistance to oxyimino cephalosporin antibiotics.
Keywords
ESBL; blaTEM; blaSHV; blaCTX-M; Klebsiella pneumoniae; antibiotic susceptibility;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Bonnet, R. 2004. Growing group of extended-spectrumlactamases: The CTX-M enzymes. Antimicrob. Agents Chemother. 48: 1-14   DOI
2 Branger, C., A. L. Lesimple, B. Bruneu, P. Berry, and Z. Lambert. 1998. Long-term investigation of the clonal dissemination of Klebsiella pneumoniae isolates producing extended-spectrum ${\beta}$-lactamases in a university hospital. J. Med. Microbiol. 47: 201-209   DOI   ScienceOn
3 Bush, K. 1989. Characterization of ${\beta}$-lactamases. Antimicrob. Agents Chemother. 33: 259   DOI   ScienceOn
4 Bush, K. and G. Jacoby. 1997. Nomenclature of TEM ${\beta}$-lactamases. J. Antimicrob. Chemother. 39: 1-3   DOI   ScienceOn
5 Du Bois, S. K., M. S. Marriott, and S. G. B. Amyes. 1995. TEM- and SHV-derived extended spectrum ${\beta}$-lactamases: Relationship between selection, structure, and function. J. Antimicrob. Chemother. 35: 7-22   DOI
6 Heritage, J. P., M. Hawkey, N. I. Todd, and J. Lewis. 1992. Transposition of the gene encoding a TEM-12 extendedspectrum lactamase. Antimicrob. Agents Chemother. 36: 1981-1986   DOI   ScienceOn
7 Hong, S. G., S. J. Kim, S. H. Jeong, C. H. Chang, S. R. Cho, J. Y. Ahn, J. H. Shin, H. S. Lee, W. K. Song, Y. Uh, J. H. Yum, D. E. Wong, K. W. Lee, and Y. S. Chong. 2003. Prevalence and diversity of extended spectrum ${\beta}$-lactamase producing Escherichia coli and Klebsiella pneumoniae isolates in Korea. Korea J. Clin. Microbiol. 6: 149-155
8 Jacoby, G. A. and A. A. Medeiros. 1991. More extendedspectrum- lactamases. Antimicrob. Agents Chemother. 35: 1697-1704   DOI   ScienceOn
9 Jacoby, G. A. 1997. Extended spectrum ${\beta}$-lactamases and other enzymes providing resistance to oxyimino-${\beta}$-lactams. Infect. Dis. Clin. NA 11: 875-887   DOI   ScienceOn
10 Livermore, D. M. 1995. ${\beta}$-Lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 8: 557-584
11 Sawai, T., S. Hirano, and A. Yamaguchi. 1987. Repression of porin synthesis by salicylate in Escherichia coli, Klebsiella pneumoniae and Serratia marcescens. FEMS Microbiol. Lett. 40: 233-246   DOI
12 Son, S. H., D. J. Lee, C. G. Kim, J. M. Kim, and H. J. Bae. 1997. Distribution TEM, SHV type beta-lactamase gene of Escherichia coli and Klebsiella pneumoniae. Infection. 29: 271-276   DOI
13 Bush, K., G. A. Jacoby, and A. A. Medeiros. 1995. A functional classification scheme for ${\beta}$-lactamases and its correlation with molecular structures. Antimicrob. Agents Chemother. 39: 1211-1233   DOI   ScienceOn
14 Kim, Y. T. and H. K. Lee. 2000. Extended-spectrum ${\beta}$-lactamase (ESBL) typing of Klebsiella pneumoniae isolated from clinical specimen in Pusan. Korea J. Microbiol. 36: 221-227
15 Vandana, T., S. Sharma, and S. Chhibber. 2005. Expression of newer outer membrane proteins (OMPs) induced by cephalosporins and quinolone group of antibiotics in Klebsiella pneumoniae. J. Microbiol. Biotechnol. 15: 421-424   과학기술학회마을
16 Poirel, L., M. Gniadkowski, and P. Nordmann. 2002. Biochemical analysis of the ceftazidime-hydrolysing extended-spectrum ${\beta}$-lactamase CTX-M-15 and of its structurally related ${\beta}$-lactamase, CTX-M-3. J. Antimicrob. Chemother. 50: 1031-1034   DOI   ScienceOn
17 Jones, R. N., M. A. Pfaller, G. V. Doern, M. E. Erwin, and R. J. Hollis. 1998. Antimicrobial activity and spectrum investigation of eight broad-spectrum $beta$-lactam drugs: A 1997 surveillance trial in 102 medical centers in the United States, Cefepime Study Group. Diagn. Microbiol. Infect. Dis. 30: 215-228   DOI   ScienceOn
18 Moland, E. S., J. A. Black, A. Hossain, N. D. Hanson, K. S. Thomson, and S. Pottumarthy. 2003. Discovery of CTX-M-like extended-spectrum-lactamases in Escherichia coli isolates from five U.S. states. Antimicrob. Agents Chemother. 47: 2382-2383   DOI
19 NCCLS. 2004. Performance Standards for Antimicrobial Susceptibility Testing: 5th Informational Supplement. NCCLS document M100-S5. NCCLS, 771 East Lancaster Avenue, Villanova, Pennsylvania 19085
20 Nuesch-Inderbinen, M. T., F. H. Kayser, and H. Hachler. 1997. Survey and molecular genetics of SHV ${\beta}$-lactamases in Enterobacteriaceae in Switzerland: Two enzymes, SHV-11 and SHV-12. Antimicrob. Agents Chemother. 41: 943-949
21 Jacoby, G. A. and L. S. Munoz-Price. 2005. The new ${\beta}$-lactamases. New Engl. J. Med. 352: 380-391   DOI   ScienceOn
22 Bae, H. J., J. M. Kim, Y. M. Kwon, K. W. Lee, Y. S. Chong, E. C. Kim, S. G. Hong, S. J. Kim, S. H. Jeong, C. H. Chang, S. R. Cho, J. Y. Ahn, J. H. Shin, H. S. Lee, W. K. Song, Y. Uh, J. H. Yum, and D. E. Wong. 1997. Characterization and type of extended-spectrum ${\beta}$-lactamase producing Klebsiella pneumoniae isolated in Korea. Infection 29: 93-103   DOI
23 Bauernfeind, A., I. Stemplinger, R. Jungwrirth, S. Ernst, and J. M. Casellas. 1996. Sequences of beta-lactamase genes encoding CTX-M-1 (MEN-1) and CTX-M-2 and relationship of their amino acid sequences with those of other beta-lactamases. Antimicrob. Agents Chemother. 40: 509-513
24 Bradford, P. A. 2001. Extended-spectrum ${\beta}$-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14: 933-951   DOI   ScienceOn
25 Arlet, G. M., M. Rouveau, I. Casin, J. M. Bouveau, P. H. Lagrange, and A. Philippon. 1994. Molecular epidemiology of Klebsiella pneumoniae strains that produce SHV-4 lactamase and which were isolated in 14 French hospitals. J. Clin. Microbiol. 32: 2553-2558
26 Bae, I. K., G. J. Woo, S. H. Jeong, K. O. Park, B. K. Cho, D. M. Kim, S. B. Kwon, H. J. Kim, and H. K. Kang. 2004. Prevalence of CTX-M-type extended-spectrum ${\beta}$-lactamaseproducing Escherichia coli and Klebsiella pneumoniae isolates in Korea. Korean J. Clin. Microbiol. 7: 48-54
27 Itokazu, G. S., J. P. Quinn, C. Bell-Dixon, F. M. Kahan, and R. A. Weinstein. 1996. Antimicrobial resistance rates among aerobic gram-negative bacilli recovered from patients in intensive care units: Evaluation of a national post marketing surveillance program. Clin. Infect. Dis. 23: 779-784   DOI   ScienceOn
28 Phillipon, A., G. Arlet, and P. H. Lagrange. 1994. Origin and impact of plasmid-mediated extended-spectrum beta-lactamases. Eur. J. Clin. Microbiol. Infect. Dis. 13 (Suppl.1): 17-29   DOI
29 Kim, B. L., S. H. Jeong, J. Y. Koo, K. W. Lee, Y. S. Chong, T. J. Jeon, H. Y. Hwang, and M. H. Kim. 1999. Prevalence of extended spectrum ${\beta}$-lactamase producing Enterobacteriaceae and evaluation of methods for detection. Korea J. Clin. Microbiol. 2: 28-39
30 Abbott, S. 1999. Manual of Clinical Microbiology, pp. 475-482. 7th Ed. American Society for Microbiology, Washington, U.S.A
31 David, L., L. Paterson, M. Kristine, M. Hujer, Y. Bethany, D. Michael, and D. Bonomo. 2003. Extended-spectrum-${\beta}$-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: Dominance and widespread prevalence of SHV- and CTX-M-type-${\beta}$-lactamases. Antimicrob. Agents Chemother. 34: 3554-3560
32 Ambler, R. P., A. F. W. Coulson, J.-M. Frere, J.-M. Ghuysen, B. Joris, M. Forsman, R. C. Levesque, G. Tiraby, and S. G. Walley. 1991. A standard numbering scheme for the class A ${\beta}$-lactamases. Biochem. J. 276: 269-272   DOI
33 Cho, E. H. and N. Y. Lee. 2003. Antibiogram of Escherichia coli and Klebsiella spp. detected by Vitek ESBL test. Korea J. Clin. Microbiol. 6: 47-51
34 Song, W. G., K. W. Lee, S. J. Kim, S. H. Jeong, C. H. Chang, and H. J. Shin. 2000. Extended-spectrum beta lactamase producing Escherichia coli and Klebsiella pneumoniae isolates from 12 hospitals in Korea. Korea J. Chemother. 18: 401-410